People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Orgiani, Pasquale
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Pulsed laser deposition of La2/3Sr1/3MnO3 thin films: first experiments using a Nd-YAG laser
- 2024STEM exploration of 2DEG at TiO2/LaAlO3 interface
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo$_2$Al$_9$
- 2023Ion-induced lateral damage in the focused ion beam patterning of topological insulator Bi2Se3 thin filmscitations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023The electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo 2 Al 9 (M = Sr, Ba)citations
- 2023Observation of termination-dependent topological connectivity in a magnetic Weyl kagome-latticecitations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics MCo2Al9 (M = Sr, Ba)citations
- 2023Electronic structure of intertwined kagome, honeycomb, and triangular sublattices of the intermetallics M Co 2 Al 9 ( M = Sr, Ba)citations
- 2023Observation of Termination-Dependent Topological Connectivity in a Magnetic Weyl Kagome Latticecitations
- 2023Observation of termination-dependent topological connectivity in a magnetic Weyl Kagome latticecitations
- 2023Flat band separation and resilient spin-Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2023Flat band separation and robust spin Berry curvature in bilayer kagome metalscitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO 3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Oxygen-Driven Metal–Insulator Transition in SrNbO3 Thin Films Probed by Infrared Spectroscopycitations
- 2022Orbital mapping of the LaAlO3-TiO2 interface by STEM-EELS
- 2022Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
- 2021Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films: A review on its origincitations
- 2021Omnipresence of weak antilocalization (WAL) in Bi 2 Se 3 thin films:a review on its origincitations
- 2021Direct-ARPES and STM investigation of FeSe thin film growth by Nd:YAG lasercitations
- 2021Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films : a review on its origincitations
- 2021Direct-ARPES and STM Investigation of FeSe Thin Film Growth by Nd:YAG Lasercitations
- 2020Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La 0.67 Sr 0.33 MnO 3 filmscitations
- 2020Tuning optical absorption of anatase thin lms across the visible/near-infrared spectral regioncitations
- 2020Analysis of Metal-Insulator Crossover in Strained {SrRuO}3 Thin Films by X-ray Photoelectron Spectroscopycitations
- 2020Direct insight into the band structure of SrNbO 3citations
- 2020Orbital Hybridization and Magnetic Coupling at Cuprate–Manganite Interfaces Driven by Manganite Dopingcitations
- 2020Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub> filmscitations
- 2020Unveiling Oxygen Vacancy Superstructures in Reduced Anatase Thin Filmscitations
- 2020Direct insight into the band structure of SrNbO3citations
- 2020Direct insight into the band structure of SrNbO3citations
- 2019Room temperature biaxial magnetic anisotropy in La0.67Sr0.33MnO3 thin films on SrTiO3 buffered MgO (001) substrates for spintronic applicationscitations
Places of action
Organizations | Location | People |
---|
document
Field induced oxygen vacancy migration in anatase thin films studied by in situ biasing TEM
Abstract
Titanium dioxide TiO2 is the most prominent representative within the class of transition metaloxides and is interesting for a large number of applications due to its optical properties, memristivebehaviour, catalytic activity and electrochemical stability. Among the different polymorphs of TiO2,anatase is the preferred configuration for many applications. Even though stoichiometric anataseis a wide band gap semiconductor with an indirect optical band gap of 3.2 eV, its electronic andoptical properties are largely determined by the presence of excess electrons, which can beinduced by dopants or intrinsic defects such as oxygen vacancies (VO). VO are inherently presentin anatase and act as donors in the n-type semiconductor. Their presence induces localizedelectronic states within the band gap, correlated to the formation of Ti3+ ions [1]. Recently we wereable to show that VO form periodic oxygen concentration variations along specific crystallographicdirections without breaking the continuity of the anatase structure, contradicting the previouslyproposed formation of shear planes [2].Related to the formation of such VO superstructures is the question about the origin of thememristive behaviour of anatase. There is theoretical evidence for the mobility of VO along the[100] and [010] crystallographic direction of the crystal in an electric field [3]. The structuralimplications of such field induced VO diffusion have however not yet been studied.Here, we present an in situ biasing TEM study of the atomic structure of oxygen deficient anatasethin films, epitaxially grown on LaAlO3 substrates by Pulsed Laser Deposition (PLD). The TEMmicrographs in Figure 1 depict such a film in its initial state (a) and after increasing the voltage to3.5 V over 30 min (b). The periodic contrast variations typical for the presence of vacancysuperstructures in TiO2 films are already visible in the initial oxygen deficient state (Fig. 1a). Afterapplying an E-field along the [100] orientation they are, however, found to significantly increase.This finding points towards an increase of VO which preserve the overall structural arrangementand the relative distances between the defective planes of the modulated structure in the observedregion.Our experimental approach enables us to apply an E-field parallel to the in-plane direction of thefilm by using a standard MEMS-based in situ biasing platform (DENS Solution Lightning), whichallows to shed light on the underlying mechanisms in electromigration and electroforming in TiO2thin films.