Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pasupathi, Sivakumar

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Automated manufacturing of high performance fuel cells and influence of electrode structure on catalyst utilizationcitations

Places of action

Chart of shared publication
Hacker, Viktor
1 / 37 shared
Kapun, Gregor
1 / 6 shared
Grandi, Maximilian
1 / 6 shared
Gatalo, Matija
1 / 7 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Hacker, Viktor
  • Kapun, Gregor
  • Grandi, Maximilian
  • Gatalo, Matija
OrganizationsLocationPeople

document

Automated manufacturing of high performance fuel cells and influence of electrode structure on catalyst utilization

  • Pasupathi, Sivakumar
  • Hacker, Viktor
  • Kapun, Gregor
  • Grandi, Maximilian
  • Gatalo, Matija
Abstract

Introduction<br/>For a large scale commercialization of fuel cells as clean energy conversion system, considerable reductions in production and system costs are necessary. In a recent cost analysis of the U.S. Department of Energy (DOE) it was confirmed that the cost of a 80 kW PEFMC stack at production volumes between 100,000 and 500,000 units per year can be reduced by changing the catalyst, increasing power output by 47%, simultaneously lowering the Pt content by 7% (using PtCo-alloy) and changing the membrane manufacturing process [1]. In total this leads to a projected price of 47$/kW or 45$/kW for 2020/2025 respectively, approaching the 2020 cost targets of the DOE. <br/>Ultrasonic spray-coating has attracted great attention as a scalable and flexible method to produce very homogeneous catalyst layers with good porosity control [2]–[4]. Through vibration of a metal tip at 120 kHz a solid/liquid suspension is atomized with lower droplet diameters and narrower size distribution than with pneumatic atomization. It can be used to either, directly coat the gas diffusion layer (GDL), or the membrane with very thin (2-6 µm) active layers. This is important for lowering mass transport related voltage losses and increase power output. As an example of its potential, a combined process using ultrasonic spray-coating and electrospinning (for membrane fabrication) resulted in a membrane electrode assembly (MEA) with the highest achieved platinum utilization so far with 88 kW gPt-1 [4]. <br/><br/>Experimental<br/>Automated ultrasonic spray-coating (see Figure 1) is used in the course of this work, to study the influence of catalyst structure on the layer thickness, proton conductivity and platinum utilization. The catalysts used in this study were a commercially available Pt/C (50 wt% platinum on carbon) and a bimetallic PtCu3/C (6 wt% platinum, 8 wt% Pt on carbon) prepared at the National Institute of Chemistry (NIC) in Ljubljana. The latter showed very high oxygen reduction activity and cycling stability in previous ex-situ studies [5].<br/>Both catalysts were dispersed in a mixture of 2-propanol and Nafion ionomer in the right amount, to obtain electrodes with 0.2 mgmetal cm-2 and 30 wt% of Nafion, after the coating process. <br/>Physical characterization consisted of cryo-cut SEM cross sections. Electrochemical characterization was performed in 5 cm² test cells and included recording of polarization curves and electrochemical impedance spectroscopy (EIS). <br/><br/>Results<br/>The MEA using Pt/C (50 wt%) performed better than the PtCu3 (8 wt%) catalyzed MEA. While 667.5 W gPt-1 were achieved with the first one, the PtCu MEA reached 256.7 W gPt-1. This is in contrast to the results obtained in ex-situ tests at the NIC, were PtCu3/C clearly outperformed Pt/C. The kinetic region of the polarization curves revealed, that kinetic Voltage losses were the same for the same metal content, meaning PtCu3 outperformed Pt. However, the polarization curve and impedance spectra of the PtCu3 MEA indicates strong diffusion limitations. SEM cross sections revealed that catalyst layers fabricated with PtCu3/C are 18 times thicker than Pt/C electrodes, explaining high mass transport losses seen in the polarization curves. This is a direct consequence of the lower metal content in the catalyst material (8wt% vs. 50 wt%).<br/><br/>Conclusions<br/>Automated ultrasonic spray-coating is a promising, scalable technique for industrial manufacturing of polymer electrolyte fuel cells, producing highly uniform- and thin layers, with great reproducibility.<br/>To achieve high platinum utilizations, catalysts need a metal content higher than 10 wt% regardless of the activities measured in ex-situ studies, to achieve thin layers. For this reason, further studies will be performed using PtCu3 and Pt catalysts with varying metal content.<br/><br/>References:<br/>[1] A. Wilson, G. Kleen, and D. Papageorgopoulos, “DOE Hydrogen and Fuel Cells Program Record,” 2017.<br/>[2] L T C Joseph M. Nolan, “Maximizing the Use of Simulations,” Infantry, no. December, pp. 39–42, 2011.<br/>[3] B. Britton and S. Holdcroft, “The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers,” J. Electrochem. Soc., vol. 163, no. 5, pp. F353–F358, 2016.<br/>[4] M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, and S. Thiele, “Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition,” Electrochem. commun., vol. 60, pp. 168–171, 2015.<br/>[5] M. Gatalo et al., “Positive Effect of Surface Doping with Au on the Stability of Pt-Based Electrocatalysts,” ACS Catal., vol. 6, no. 3, pp. 1630–1634, 2016.<br/><br/>

Topics
  • Deposition
  • pore
  • surface
  • polymer
  • Carbon
  • scanning electron microscopy
  • simulation
  • Oxygen
  • Platinum
  • Hydrogen
  • ultrasonic
  • electrochemical-induced impedance spectroscopy
  • porosity
  • electrospinning
  • atomization