People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Plank, Harald
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Nanoscale, surface-confined phase separation by electron beam induced oxidationcitations
- 2024A Review on Direct-Write Nanoprinting of Functional 3D Structures with Focused Electron Beamscitations
- 2023Thermally-triggered multi-shape-memory behavior of binary blends of cross-linked EPDM with various thermoplastic polyethylenes and their potential applications as temperature indicatorscitations
- 2023Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High-Precision Nano-Printingcitations
- 2023Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model Systemcitations
- 2022Vanadium and Manganese Carbonyls as Precursors in Electron-Induced and Thermal Deposition Processes
- 2022A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloyscitations
- 2022Direct-Write 3D Nanoprinting of High-Resolution Magnetic Force Microscopy Nanoprobes
- 2022Precursors for Direct-Write Nanofabrication with Electrons
- 2022Localized Direct Material Removal and Deposition by Nanoscale Field Emission Scanning Probescitations
- 2022Focused Ion Beam vs Focused Electron Beam Deposition of Cobalt Silicide Nanostructures Using Single-Source Precursorscitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2019Focused Electron Beam Induced Deposition Synthesis of 3D Photonic and Magnetic Nanoresonatorscitations
- 2019In situ real-time annealing of ultrathin vertical Fe nanowires grown by focused electron beam induced depositioncitations
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomographycitations
- 2018Thin Films from Acetylated Lignin
- 2017How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorptioncitations
- 2017How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorptioncitations
- 2016Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.citations
- 2014The nanoscale implications of a molecular gas beam during electron beam induced depositioncitations
- 2014Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reactioncitations
- 2014A combined approach to predict spatial temperature evolution and its consequences during FIB processing of soft mattercitations
- 2013Chemical degradation and morphological instabilities during focused ion beam prototyping of polymerscitations
- 2013Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensingcitations
- 2012Direct electroplating of copper on tantalum from ionic liquids in high vacuum: Origin of the tantalum oxide layercitations
- 2012Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamidecitations
Places of action
Organizations | Location | People |
---|
document
Precursors for Direct-Write Nanofabrication with Electrons
Abstract
Focused electron beam deposition (FEBID) allows the spatially controlled formation of nanoparticles, thin films,nanowires and free-standing complex nanoarchitectures on a wide range of substrate materials. Moreover, themethod enables a growth on structured surfaces and the formation of predefined arrays by this maskless direct-writeapproach. However, the purity of the as-grown material is typically limited. According to the knowledge gained byconsidering surface science studies, several different reaction paths could be assigned according to the compositiongained in FEBID experiments as summarized in Fig. 1. Therefore, the FEBID method requires precursor developmentto provide chemical impetus driving its broader applicability. This contribution will shortly summarize the state-of theart of precursors used, which has been described in a recent review [1]. Moreover, suggestions of necessarylimitations or suggestions will be presented. The knowledge gained is applied to the synthesis procedures for metalsilicide and alloy formation. Specific examples of precursors will be discussed and approaches for targeted binarycompounds will be present