People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Immonen, Kirsi
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2025A skeletonization-based approach for individual fiber separation in tomography images of biocomposites
- 2024Effect of unbleached and bleached softwood cellulose pulp fibers on poly(lactic acid) propertiescitations
- 2024Biocomposites through foam-forming of long fiber suspensions
- 2023Effect of accelerated aging on properties of biobased polymer films applicable in printed electronicscitations
- 2022Recycling of 3D Printable Thermoplastic Cellulose-Compositecitations
- 2022Biocomposite modeling by tomographic feature extraction and synthetic microstructure reconstructioncitations
- 2022Novel Cellulose based Composite Material for Thermoplastic processing
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Thermoplastic Cellulose-Based Compound for Additive Manufacturingcitations
- 2020Feasibility of foam forming technology for producing wood plastic compositescitations
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Poly(lactic acid)/pulp fiber compositescitations
- 2020Poly(lactic acid)/pulp fiber composites:The effect of fiber surface modification and hydrothermal aging on viscoelastic and strength propertiescitations
- 2019Material sorting using hyperspectral imaging for biocomposite recycling
- 2018Modelling of hygroexpansion in birch pulp - PLA composites
- 2018Modelling of hygroexpansion in birch pulp - PLA composites:A numerical approach based on X-ray micro-tomography
- 2018Totally bio-based, high-performance wood fibre biocomposites
- 2017Effects of Surfactants on the Preparation of Nanocellulose-PLA Compositescitations
- 2016Predicting stiffness and strength of birch pulp : polylactic acid compositescitations
- 2016Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite materialcitations
- 2016Highly porous fibre structures and biocomposites made of mixtures of wood, biopolymers and hemp
- 2016Predicting stiffness and strength of birch pulp:Polylactic acid compositescitations
- 2016Predicting stiffness and strength of birch pulp – Polylactic acid compositescitations
- 2015Improving mechanical properties of novel flax/tannin composites through different chemical treatmentscitations
- 2015Novel hybrid flax reinforced supersap composites in automotive applicationscitations
- 2011Potential of chemo- enzymatically modified CTMP in biocomposites
- 2011Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matricescitations
Places of action
Organizations | Location | People |
---|
document
Biocomposites through foam-forming of long fiber suspensions
Abstract
Replacing plastic fibers with wood fibers in thermoplastic polymer matrix is one of the pathways to manufacture carbon-neutral biocomposites. It is known that fibers improve the mechanical properties of composites. However, due to harsh processing conditions in the current technologies including extrusion and moulding, the fiber length in the final composite is significantly shorter. Therefore, we coupled foam forming technology with thermoforming to produce biocomposites with impressive mechanical properties that exceeded the current wood-based thermoplastic composites found in the literature. During foam-forming, the fiber length in the final composite was maintained irrespective of initial fiber consistency and fiber length. Experiments were carried out in both lab and pilot scale. In lab, experiments were mainly carried out to understand the effect of raw material composition on strength properties. Pilot trials were carried out to demonstrate the scalability and to understand the effect of processing conditions to generate floc free web with long fibers. The foam-forming consistency ranged from 0.12% to 3 %, which was a significant increase compared to water-forming process. Initially, foam sheets with varying grammages in the range of 42 g/m2 to 393 g/m2 were produced in the pilot machine. The dried foam sheets were then stacked to achieve grammage of 1200 g/m2 followed by thermoforming at 180ºC and 6.2 bar. Foam sheets were made using the following raw materials: a) 1.7 dTex Tencel fiber with the length above 10 mm as long fibers, b) 2 mm wood pulp as short fibers, and c) BiCo fibers comprising polypropylene core and polyethylene sheath or LDPE powder as thermoplastic fibers. The effect of fiber type, proportion of long fibers and fiber length on uniformity, strength and mouldability were studied. Visual assessments indicated that the sheet uniformity was good with improved fiber bundle disintegration and reduced flocs even with 20 mm long Tencel fibers. Moulding properties were highly dependent on the proportion of fiber, fiber type, amount of thermoplastics, basis weight, density and the ratio of wood to plastic fibers. In summary, the results indicated that the foam-forming technology enables the manufacturing of long fiber biocomposites with visual and strength properties suitable for packaging, furniture, and automotive applications.