People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Presoly, Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S
- 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steelcitations
- 2024Influence of Silicon and Tramp Elements on the High-temperature Oxidation of Steel in Direct Casting and Rolling Processes
- 2024Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanismscitations
- 2023The influence of intergranular oxidation on surface crack formation in continuous casting of steelcitations
- 2023Classification of peritectic steels by experimental methods, computational thermodynamics and plant data: An Overview
- 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gapcitations
- 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometrycitations
- 2023High-temperature oxidation of steel recycled from scrap: The role of tramp elements and their influence on oxidation behavior
- 2022High temperature thermodynamics of the Fe-C-Mn system; new experimental data for the Fe-C-10 and 20 wt.-% Mn system
- 2022Primary Carbide Formation in Tool Steelscitations
- 2022Evaluation of different alloying concepts to trace non-metallic inclusions by adding rare earths on a laboratory scalecitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Experimental thermodynamics for improving CALPHAD optimizations at the Chair of Ferrous Metallurgy
- 2021Characterization of the gamma-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniquescitations
- 2020Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extractioncitations
- 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systemscitations
- 2020Investigation of Fe–C–Cr and Fe–C–Cr–Ni-based systems with the use of DTA and HT-LSCM methodscitations
- 2019High precious phase diagrams – a roadmap for a successful casting processing
- 2019Evaluation of AHSS concepts with a focus on the product properties and appropriate casting characteristics of Arvedi ESP thin slab casterscitations
- 2017The potential for grain refinement of a super austenitic stainless steel with a cerium grain refiner
- 2017Modeling Inclusion Formation during Solidification of Steelcitations
- 2017Influence of Silicon and Manganese on the Peritectic Range for Steel Alloys
- 2017Further development and validation of IDS by means of selected experiments
- 2016On the modelling of microsegregation in steels involving thermodynamic databases
Places of action
Organizations | Location | People |
---|
document
High precious phase diagrams – a roadmap for a successful casting processing
Abstract
Phase diagrams are essential scientific tools for a fundamental thermodynamic material understanding. In times of increasing digitalization of the continuous casting process (CC), the availability of high-precision phase diagrams is of great importance. Especially for process control and quality prediction considerations, the knowledge of reliable thermodynamic data plays a key role, next to the numerical algorithms. These thermodynamic data should be valid for a wide range of concentrations far beyond the compositions of current steel grades to describe future alloys.<br/>Above all, thermodynamic data need to describe highly increased concentration levels, which can result from strong micro segregation around final point of solidification. The present work provides an overview of the following selected topics: pre-identification of peritectic steels before the production by means of DSC-measurements, evaluation of microsegregation calculations for higher manganese alloyed steels by thermal analysis of “artificial” segregations and solidification calculation of phosphorus alloyed steels using a new assessment of the Fe-P system. All these examples point out the importance of “real measurements” and even why it is nowadays still necessary to critically re-examine a binary system (e.g. Fe-P) in detail.