People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leitner, Harald
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Influence of platform preheating on in situ precipitation in an FeCoMo alloy during laser powder bed fusioncitations
- 2022Potential Causes for Cracking of a Laser Powder Bed Fused Carbon-free FeCoMo Alloycitations
- 2022Cracking mechanism in a laser powder bed fused cold-work tool steelcitations
- 2022Cracking mechanism in a laser powder bed fused cold-work tool steel: The role of residual stresses, microstructure and local elemental concentrationscitations
- 2022Local microstructural evolution and the role of residual stresses in the phase stability of a laser powder bed fused cold-work tool steelcitations
- 2021Influence of thermomechanical fatigue loading conditions on the nanostructure of secondary hardening steelscitations
- 2020METHOD FOR PRODUCING AN ARTICLE FROM A MARAGING STEEL
- 2020Defects in a laser powder bed fused tool steelcitations
- 2020Determination of Martensite Start Temperature of High‐Speed Steels Based on Thermodynamic Calculationscitations
- 2019Microstructural evolution of a dual hardening steel during heat treatmentcitations
- 2019VERFAHREN ZUM HERSTELLEN EINES GEGENSTANDS AUS EINEM MARAGING-STAHL
- 2019Thermomechanical fatigue testing of dual hardening tool steelscitations
- 2017The potential for grain refinement of a super austenitic stainless steel with a cerium grain refiner
- 2008δ-phase characterization of superalloy Allvac 718 Plus™
Places of action
Organizations | Location | People |
---|
document
The potential for grain refinement of a super austenitic stainless steel with a cerium grain refiner
Abstract
Austenitic stainless steels typically show a tendency towards the formation of large columnar grains and shrinking porosities during solidification. Altering this primary structure to be finer normally leads to improved mechanical properties in the final product. This can be achieved by applying grain refiners to cause a columnar to equiaxed transition at an early stage of solidification, resulting in a fine grained equiaxed microstructure in the center of the ingot.<br/>The influence of a commercial grain refiner containing Fe-Cr-Si-Ce on the super austenitic stainless steel X1CrNiMoCuN20-18-7 was investigated. From extensive literature research, AlCeO3 and Ce2O3 were identified as most promising particles for the heterogeneous nucleation of austenite. From the result of thermodynamic considerations the activities of O, Al and Ce were then adjusted to guarantee for stable AlCeO3 or Ce2O3 particles. In melting experiments a two stage deoxidation practice in the induction furnace prior to casting of the 20 kg ingots resulted in a precocious columnar to equiaxed transition. This paper deals with a detailed SEM/EDS investigation of the inclusions, macro- and microetching of the ingots and the quantitative analysis of the formed microstructure.