People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Julien
Université Grenoble Alpes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Caractérisation et Modélisation Des Mécanismes d'endommagement Des Matériaux Par La Cavitation
- 2024Characterization and Modeling of Material Damage Mechanisms by Cavitation
- 2024Influence of cavitation type on damage kinetics on a low-carbon martensitic stainless steel
- 2023Influence of microstructure on mass loss caused by acoustic and hydrodynamic cavitation ; Effet de la microstructure sur la perte de masse engendrée par la cavitation acoustique et hydrodynamique
- 2023Comparison of acoustic and hydrodynamic cavitation: material point of view ; Comparaison entre cavitation ultrasonore et hydrodynamique : point de vue du matériaucitations
- 2023Influence of microstructure on mass loss caused by acoustic and hydrodynamic cavitation
- 2022Comparison of acoustic and hydrodynamic cavitation: material point of view ; Comparaison entre cavitation ultrasonore et hydrodynamique : point de vue du matériaucitations
- 2022Comparison of acoustic and hydrodynamic cavitation: material point of viewcitations
Places of action
Organizations | Location | People |
---|
thesis
Characterization and Modeling of Material Damage Mechanisms by Cavitation
Abstract
Martensitic stainless steels X3CrNiMo13-4 and X4CrNiMo16-5-1 are widely used to date in the construction of hydroelectric turbines for their good mechanical resistance and intriguing corrosion resistance. Despite extensive mechanical and microstructural studies on these materials, the connection between these properties and damage mechanisms remains unclear. In certain situations, operators must work under cavitation flow conditions, which can cause turbine damage, resulting in mass loss, noise issues, and reduced efficiency. In such scenarios, turbine engineers need to resort to modeling, and a crucial aspect of the mathematical model is the damage law. The objective of the research presented in this manuscript is precisely to characterize and model the damage mechanisms induced by cavitation.In this work, the materials were exposed to cavitation using two complementary experimental setups, MUCEF and PREVERO, allowing the generation of acoustic and hydrodynamic cavitation, respectively. To identify damage mechanisms, temporal monitoring of crack initiation and propagation was conducted on the material's surface through electron microscopy and in the material's volume using X-ray tomography. The observations reveal that crack initiation occurs in the vicinity of non-metallic elements, along persistent slip bands, which are indicative of very low-cycle fatigue loading. Cracks propagate from the surface into the volume and then parallel to the surface, no longer influenced by the presence of intermetallics. We have shown that this damage mechanism is the same for the two selected materials, for two tested microstructural states, and for the two experimental conditions. Ultimately, the size and frequency distributions of pits allow for the proposal of a simple damage model applicable for finite element simulations.