People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Carin, Muriel
Processes and Engineering in Mechanics and Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023A novel apparatus dedicated to the estimation of the thermal diffusivity of metals at high temperaturecitations
- 2023A novel hydraulic bulge test in hot forming conditionscitations
- 2022Conventional Meso-Scale and Time-Efficient Sub-Track-Scale Thermomechanical Model for Directed Energy Depositioncitations
- 2022Numerical modeling for large-scale parts fabricated by Directed Energy Depositioncitations
- 2018Design and development of an induction furnace to characterize molten metals at high temperatures
- 2018Investigation of the progressive hot die stamping of a complex boron steel part using numerical simulations and Gleeble testscitations
- 2014A model comparison to predict heat transfer during spot GTA weldingcitations
- 2014Influence of a pulsed laser regime on surface finish induced by thedirect metal deposition process on a Ti64 alloycitations
- 2013A model comparison to predict heat transfer during spot GTA weldingcitations
- 2013A model comparison to predict heat transfer during spot GTA weldingcitations
- 2012Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti-6Al-4V alloycitations
- 2012Surface Finish Issues after Direct Metal Deposition
- 2012Influence of various process conditions on surface finishes induced by the direct metal deposition laser technique on a Ti–6Al–4V alloycitations
- 20122D longitudinal modeling of heat transfer and fluid flow during multilayered
- 20122D longitudinal modeling of heat transfer and fluid flow during multilayered
- 20113D heat transfer model of hybrid laser Nd : Yag-MAG welding of a S355 steel and experimental validationcitations
- 20113D heat transfer model of hybrid laser Nd : Yag-MAG welding of a S355 steel and experimental validationcitations
- 2011Analysis of hybrid Nd:Yag laser-MAG arc welding processes.citations
- 2011Analysis of hybrid Nd:Yag laser-MAG arc welding processes.citations
- 2011Estimation of a source term in a quasi steady two-dimensional heat transfer problem: application to an electron beam weldingcitations
- 2006Thermo-mechanical modelling for the opening of electron-beam welded jointscitations
Places of action
Organizations | Location | People |
---|
article
Surface Finish Issues after Direct Metal Deposition
Abstract
Derived from laser cladding, the Direct Metal Deposition (DMD) laser process, is based upon a laser beam - projected powder interaction, and allows manufacturing complex 3D shapes much faster than conventional processes. However, the surface finish remains critical, and DMD parts usually necessitate post-machining steps. In this context, the focus of our work was: (1) to understand the physical mechanisms responsible for deleterious surface finishes, (2) to propose different experimental solutions for improving surface finish. Our experimental approach is based upon: (1) adequate modifications of the DMD conditions (gas shielding, laser conditions, coaxial or off-axis nozzles), (2) a characterization of laser-powder-melt-pool interactions using fast camera analysis, (3) a precise check of surface aspects using 3D profilometry, SEM, (4) preliminary thermo-convective simulations to understand melt-pool hydrodynamics. Most of the experimental tests were carried out on a Ti6Al4V titanium alloy, widely investigated already. Results confirm that surface degradation depends on two aspects: the sticking of non-melted or partially melted particles on the free surfaces, and the formation of menisci with more or less pronounced curvature radii. Among other aspects, a reduction of layer thickness and an increase of melt-pool volumes to favor re-melting processes are shown to have a beneficial effect on roughness parameters.