Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Majzlan, Juraj

  • Google
  • 7
  • 27
  • 95

Friedrich Schiller University Jena

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021Heat capacity, entropy, configurational entropy, and viscosity of magnesium silicate glasses and liquids3citations
  • 2021Incorporation mechanism of tungsten in W-Fe-Cr-V-bearing rutile9citations
  • 2020Processes of metastable-mineral formation in oxidation zones and mine waste18citations
  • 2013Vysokýite, U<sup>4+</sup>[AsO<sub>2</sub>(OH)<sub>2</sub>]<sub>4</sub>·4H<sub>2</sub>O, a new mineral from Jáchymov, Czech Republic6citations
  • 2011Bêhounekite, U(SO<sub>4</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>, from Jáchymov (St Joachimsthal), Czech Republic: the first natural U<sup>4+</sup>sulphate17citations
  • 2010Hydrogen bonding in coquimbite, nominally Fe2(SO4)3×9H2O, and the relationship between coquimbite and paracoquimbitecitations
  • 2009Matrix composition and community structure analysis of a novel bacterial pyrite leaching community42citations

Places of action

Chart of shared publication
Tangeman, Jean A.
1 / 2 shared
Dachs, Edgar
1 / 5 shared
Mikuš, Tomáš
1 / 1 shared
Milovská, Stanislava
1 / 1 shared
Števko, Martin
1 / 1 shared
Rössler, Christiane
1 / 1 shared
Matthes, Christian
1 / 1 shared
Čaplovičová, Mária
1 / 5 shared
Göttlicher, Jörg
1 / 3 shared
Bolanz, Ralph
1 / 3 shared
Novák, M.
2 / 4 shared
Hloušek, J.
2 / 2 shared
Čejka, J.
2 / 4 shared
Sejkora, J.
2 / 4 shared
Škoda, R.
2 / 11 shared
Veselovský, F.
1 / 1 shared
Plášil, J.
2 / 4 shared
Machovic, V.
1 / 1 shared
Fejfarová, K.
1 / 6 shared
Talla, D.
1 / 1 shared
Dušek, M.
1 / 22 shared
Đorđević, Tamara
1 / 18 shared
Kolitsch, Uwe
1 / 5 shared
Schefer, Jürg
1 / 3 shared
Ziegler, Sibylle
1 / 2 shared
Ackermann, Sonia
1 / 1 shared
Gescher, Johannes
1 / 3 shared
Chart of publication period
2021
2020
2013
2011
2010
2009

Co-Authors (by relevance)

  • Tangeman, Jean A.
  • Dachs, Edgar
  • Mikuš, Tomáš
  • Milovská, Stanislava
  • Števko, Martin
  • Rössler, Christiane
  • Matthes, Christian
  • Čaplovičová, Mária
  • Göttlicher, Jörg
  • Bolanz, Ralph
  • Novák, M.
  • Hloušek, J.
  • Čejka, J.
  • Sejkora, J.
  • Škoda, R.
  • Veselovský, F.
  • Plášil, J.
  • Machovic, V.
  • Fejfarová, K.
  • Talla, D.
  • Dušek, M.
  • Đorđević, Tamara
  • Kolitsch, Uwe
  • Schefer, Jürg
  • Ziegler, Sibylle
  • Ackermann, Sonia
  • Gescher, Johannes
OrganizationsLocationPeople

article

Hydrogen bonding in coquimbite, nominally Fe2(SO4)3×9H2O, and the relationship between coquimbite and paracoquimbite

  • Đorđević, Tamara
  • Kolitsch, Uwe
  • Majzlan, Juraj
  • Schefer, Jürg
Abstract

Using single-crystal X-ray diffraction at 293, 200 and 100 K, and neutron diffraction at 50 K, we have refined the positions of all atoms, including hydrogen atoms (previously undetermined), in the structure of coquimbite (P3_1c, a?=?10.924(2)/10.882(2) Å, c?=?17.086(3) / 17.154(3) Å, V?=?1765.8(3)/1759.2(5) Å3, at 293 / 50 K, respectively). The use of neutron diffraction allowed us to determine precise and accurate hydrogen positions. The O-H distances in coquimbite at 50 K vary between 0.98 and 1.01 Å. In addition to H2O molecules coordinated to the Al3+ and Fe3+ ions, there are rings of six "free" H2O molecules in the coquimbite structure. These rings can be visualized as flattened octahedra with the distance between oxygen and the geometric center of the polyhedron of 2.46 Å. The hydrogen-bonding scheme undergoes no changes with decreasing temperature and the unit cell shrinks linearly from 293 to 100 K. A review of the available data on coquimbite and its "dimorph" paracoquimbite indicates that paracoquimbite may form in phases closer to the nominal composition of Fe2(SO4)3·9H2O. Coquimbite, on the other hand, has a composition approximating Fe1.5Al0.5(SO4)3·9H2O. Hence, even a "simple" sulfate Fe2-x Al x (SO4)3·9H2O may be structurally rather complex.

Topics
  • phase
  • x-ray diffraction
  • Oxygen
  • Hydrogen
  • neutron diffraction