People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palatinus, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction datacitations
- 2024Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II): discovery of the first ruthenium tetrapyrrole <i>cis</i>-dicarbonyl complex by X-ray and electron diffraction
- 2023Quantitative three-dimensional local order analysis of nanomaterials through electron diffractioncitations
- 2023Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction datacitations
- 2023Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data
- 2022Polar Crystal Habit and 3D Electron Diffraction Reveal the Malaria Pigment Hemozoin as a Selective Mixture of Centrosymmetric and Chiral Stereoisomerscitations
- 2021ELECTRON DIFFRACTION - A NEW TOOL FOR CRYSTAL STRUCTURE SOLUTIONS
- 20193D Electron Diffraction: The Nanocrystallography Revolutioncitations
- 2017Unusual ferroelectric and magnetic phases in multiferroic 2H-BaMnO3 ceramicscitations
Places of action
Organizations | Location | People |
---|
article
ELECTRON DIFFRACTION - A NEW TOOL FOR CRYSTAL STRUCTURE SOLUTIONS
Abstract
X-ray single crystal diffraction analysis is currently the most used method for determining the structure of substances. In the last 15 years, however, 3D electron diffraction has developed rapidly as a competitive method of structural analysis. Compared to X-ray single crystal analysis, the input crystal size for 3D electron diffraction is 2-3 orders of magnitude smaller, and structural analysis can also be performed in a complex matrix. In addition, data collection takes from seconds to minutes for 3D electron diffraction, compared to hours for X-ray diffraction. Although 3D electron diffraction is not yet a precise and routine technique, it has great application potential for chemists. The goal of this review is to provide a brief insight of the principles of 3D electron diffraction, experimental design, data collection and structural evaluation. Emphasis is placed on illustrating structural applications in the fields of inorganic, organic, metalloorganic compounds, metals and alloys, aperiodic crystals, zeolite sieves, minerals, proteins and pharmaceutical substances. The development of the structural methodology of 3D electron diffraction in the Czech Republic was supported by a EXPRO grant of the Czech Science Foundation.