People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jadot, Matthieu
Université Catholique de Louvain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Analysis of grain structure, precipitation and hardness heterogeneities, supported by a thermal model, for an aluminium alloy 7075 deposited by solid-state multi-layer friction surfacingcitations
- 2024Heterogeneities in solid-state MLFS additively manufactured 7075 aluminium alloy
- 2024Processing, Microstructure and Mechanical Properties of Multi-layer Friction Surfacing in 7075 Aluminium Alloy
- 2024Process parameters selection for multi-layer friction surfacing of 7075 aluminium alloycitations
- 2023Heterogeneities in solid-state additively manufactured 7075 aluminium alloy
- 2023Heterogeneities in solid-state additively manufactured 7075 aluminium alloy
Places of action
Organizations | Location | People |
---|
document
Heterogeneities in solid-state MLFS additively manufactured 7075 aluminium alloy
Abstract
The solid-state additive manufacturing (AM) process of Multi-Layer Friction Surfacing (MLFS) is ideal for building 3-dimensional parts made of precipitation hardened high-strength 7075 aluminium alloy. 7xxx aluminium alloys have the advantage of high performances to weight ratio but 7xxx series are still a challenge to process using fusion-based AM processes. That is why, MLFS is a good candidate for high quality part building by avoiding solidification defects. This process leads to produce microstructural (grain size and precipitate size and distribution) and mechanical (hardness) heterogeneities. The thermal history is studied using a multilayer thermal model, including temperature, cooling rate and heat accumulation simulations, that provides a better understanding of the effect of multiple thermal cycles on microstructural heterogeneities. The grain size evolution in a layer shows small grains in the layer centre with even finer grains at the bottom and top of the layer. Indeed, feedstock material grains are fully recrystallized and refined. The grain size profile also varies along the deposition height of the multi-layer structure. These variations with height result from a combination of mechanical and thermal effects during MLFS. The strengthening precipitates are significantly affected in the layered structure due to the complex thermal field. The size and density gradients of the precipitates along the height of the structure is responsible for the significantly higher microhardness of the top layer. For some applications homogeneous parts are required. Using post-MLFS T6 heat treatment, the hardening precipitation is restored, improving significantly the microhardness. The microhardness profile is uniform and reaches the peak-aged T6 state stage. Abnormal grain growth occurs during the T6 heat treatment. However, tensile properties are restored to 7075 classical T6 values, as tensile specimens show strength exceeding 500MPa and a typical elongation of 10%.