Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xie, Yunhui

  • Google
  • 3
  • 10
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learning6citations
  • 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learningcitations
  • 2019Image-based monitoring of high-precision laser machining via a convolutional neural networkcitations

Places of action

Chart of shared publication
Mcdonnell, Michael
2 / 2 shared
Blundell, Sophie
2 / 2 shared
Mills, Benjamin
3 / 12 shared
Etter, Olivia
2 / 2 shared
Grant-Jacob, James A.
3 / 19 shared
Eason, Robert W.
3 / 65 shared
Mackay, Benita
3 / 4 shared
Praeger, Matthew
2 / 18 shared
Lewis, Rohan
2 / 2 shared
Heath, Daniel
1 / 3 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Mcdonnell, Michael
  • Blundell, Sophie
  • Mills, Benjamin
  • Etter, Olivia
  • Grant-Jacob, James A.
  • Eason, Robert W.
  • Mackay, Benita
  • Praeger, Matthew
  • Lewis, Rohan
  • Heath, Daniel
OrganizationsLocationPeople

document

Image-based monitoring of high-precision laser machining via a convolutional neural network

  • Mills, Benjamin
  • Xie, Yunhui
  • Grant-Jacob, James A.
  • Eason, Robert W.
  • Mackay, Benita
  • Heath, Daniel
Abstract

Materials processing using femtosecond laser pulses offers the potential for high-precision manufacturing. However, due to the associated nonlinear processes, even small levels of experimental noise (e.g. instability in laser power, or unexpected debris) can result in substantial deviations from the desired machined structures. There is therefore much interest in the development of closed-loop feedback processes. Recent advances in the algorithms behind neural networks, and in particular convolutional neural networks (CNNs) have led to rapid advancements in the field. Here, we will present the first demonstration of the application of a CNN for observing and identifying the experimental parameters exclusively from a camera that observes the sample during laser machining. We will show that the CNN was able to accurately determine the laser fluence, number of pulses and the material used.<br/>Although there are many other computational approaches for image-based feedback, this CNN approach has the significant advantage that it works purely as a pattern recognition device, and hence requires minimal human input with regards to the physical processes that underlie the laser machining process. Therefore, this avoids the need for a comprehensive programmatical description of the nonlinear interaction of laser light and material. Training time was one hour, and the time to process and identify the experimental parameters from a single image was approximately 30 milliseconds, hence showing the potential for a CNN to act as the central component of a real-time feedback system for laser machining, and enabling undesired or incorrect machining to be immediately compensated.<br/>

Topics
  • impedance spectroscopy