People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shepherd, David P.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2018Yb-doped mixed sesquioxide thin films grown by pulsed laser depositioncitations
- 2018Towards high-power on-chip GHz frequency combs
- 2017Tailoring the refractive index of films during pulsed laser deposition growth
- 2017Pulsed laser deposition of garnets at a growth rate of 20-microns per hour
- 2016Laser performance of Yb-doped-garnet thin films grown by pulsed laser deposition
- 2016PLD growth of complex waveguide structures for applications in thin-film lasers: a 25 year retrospective
- 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devices
- 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devices
- 2015Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide laserscitations
- 2015Pulsed laser-assisted fabrication of laser gain media
- 2015Towards fabrication of 10 W class planar waveguide lasers: analysis of crystalline sesquioxide layers fabricated via pulsed laser deposition
- 2014Near-infrared, mode-locked waveguide lasers with multi-GHz repetition rates
- 2014Pulsed laser deposition of thin films for optical and lasing waveguides (including tricks, tips and techniques to maximize the chances of growing what you actually want)
- 2014Graphene q-switched Yb: phosphate glass channel waveguide laser
- 2012Passively mode-locked diode-pumped monolithic channel waveguide laser with a repetition rate of 4.9 GHz
- 2008Current state-of-the-art of pulsed laser deposition of optical waveguide structures: existing capabilities and future trendscitations
- 2006Optical waveguide growth and applications
- 2004Laser operation of a low loss (0.1dB/cm) Nd:Gd3Ga5O12 thick (40 micron) planar waveguide grown by pulsed laser depositioncitations
- 2004Channel waveguide lasers in a lead silicate glass fashioned using the extrusion techniquecitations
- 2003Gain measurements at 2.8µm and fluorescence spectroscopy in Er:LaF3 waveguides fabricated by molecular beam epitaxy
- 2003Three-dimensional structuring of sapphire by sequential He+ ion-beam implantation and wet chemical etchingcitations
- 2002Laser-assisted microstructuring for Ti:sapphire channel-waveguide fabrication
- 2002Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fibre lasercitations
- 2002Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glasscitations
Places of action
Organizations | Location | People |
---|
document
Tailoring the refractive index of films during pulsed laser deposition growth
Abstract
Pulsed laser deposition (PLD) enables the epitaxial growth of crystalline films using material transfer, from a target to a substrate, via a plasma-plume created during laser ablation. Owing to the several experimental controls available in PLD, which can be adjusted during deposition, this is an excellent tool for growing designer films through altering film parameters such as stoichiometry, crystallinity and thickness [1, 2]. <br/><br/>We will present the effects on the refractive index of thin garnet films grown via PLD when varying the temperature of the substrate, onto which the films are grown. Our results show that monotonic control of the YGG refractive index with substrate temperature is possible whilst maintaining good crystal properties. It was observed that at higher substrate temperatures, the gallium content in the crystal is reducing, supported by EDX and XRD measurements, which leads to a decrease in the refractive index of the film. This technique can therefore be used for the fabrication of advanced devices with bespoke refractive index profiles and engineered dielectric properties of composite materials.<br/>1. J. A. Grant-Jacob et al. Opt. Mater. Express 6, 91-96 (2016)<br/>2. T. L. Parsonage et al. Opt. Express 23, 31691-31697 (2015)