Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Parsonage, Tina

  • Google
  • 2
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devicescitations
  • 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devicescitations

Places of action

Chart of shared publication
Sloyan, Katherine
1 / 2 shared
Grant-Jacob, James A.
2 / 19 shared
Mackenzie, Jacob I.
2 / 18 shared
Eason, Robert W.
2 / 65 shared
Beecher, Stephen
1 / 5 shared
Hua, Ping
2 / 9 shared
Shepherd, David P.
2 / 24 shared
Beecher, Stephen J.
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Sloyan, Katherine
  • Grant-Jacob, James A.
  • Mackenzie, Jacob I.
  • Eason, Robert W.
  • Beecher, Stephen
  • Hua, Ping
  • Shepherd, David P.
  • Beecher, Stephen J.
OrganizationsLocationPeople

document

Pulsed laser deposited crystalline optical waveguides for thin-film lasing devices

  • Grant-Jacob, James A.
  • Mackenzie, Jacob I.
  • Eason, Robert W.
  • Beecher, Stephen J.
  • Parsonage, Tina
  • Hua, Ping
  • Shepherd, David P.
Abstract

We have used the technique of pulsed laser deposition (PLD) to grow doped crystalline films of garnets (YAG) and sesquioxdes (Y<sub>2</sub>O<sub>3</sub>, Sc<sub>2</sub>O<sub>3</sub>, and Lu<sub>2</sub>O<sub>3</sub>) for application as optically-pumped waveguide lasers. For the sesquioxides in particular, PLD offers a real advantage in terms of the ~1100K growth temperature required to grow crystalline thin films in comparison to ~2750K required to grow bulk crystals. We can grow these materials at the rate of ~4 µm per hour, on cheap and readily available single-crystal YAG substrates, which allows rapid production of waveguide samples of the ~10-20 µm thickness required for efficient pumping via high-power diode lasers.<br/><br/>The sesquioxide films grow preferentially in the (222) crystal orientation, and although there is an excellent lattice match to the (100) oriented YAG substrates, the four-fold symmetry associated with the (222) growth direction can lead to the presence of domain boundary problems that contribute to an undesirable optical loss within these waveguide hosts. In contrast the garnet hosts experience ideal epitaxial growth (i.e. YAG films grown on YAG substrates) where the presence of the dopant lasing ion produces the necessary refractive index requirement for waveguide operation.<br/><br/>We will discuss the range of lasing results we have achieved so far, which includes c.w. lasing within single waveguide films, capped layers and multilayer structures where the doped lasing layer has been grown within a 3-layer sandwich structure [1,2]. We will also describe results where a single layer of graphene has been deposited on either the output coupler mirror, or on the top surface of the guide, to produce pulsed laser output in q-switched mode [3-4]. Since these lasing waveguides are optically pumped by diode lasers, it is important to design these guiding structures to ensure efficient operation in terms of low threshold and high slope efficiency. Details will be given on optimum waveguide design as well as our strategy on further reduction of optical propagation losses.

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • pulsed laser deposition