People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sones, Collin
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2017Laser manufactured paper devices for multiplexed detection of bacteria and their resistance to antibiotics
- 2017Bacterial pathogen detection using laser-structured paper-based diagnostic sensors
- 2013Printing of continuous copper lines using LIFT with donor replenishment
- 2013Laser-assisted direct writing of thermoelectric generators
- 2005Light-induced domain engineering in ferroelectrics
- 2002Etch frustration in congruent lithium niobate single crystals induced by femtosecond ultra-violet laser irradiationcitations
Places of action
Organizations | Location | People |
---|
document
Printing of continuous copper lines using LIFT with donor replenishment
Abstract
Metallic deposition is important for an array of scientific and technological applications. Standard deposition techniques include sputtering, evaporation and chemical vapour deposition (CVD) [1], however, these all lack the ability to achieve spatial patterning without subsequent processing steps. Methods such as e-beam lithography and focused ion beam milling can be used for surface patterning of metals and other materials [2], but they generally require vacuum conditions and can therefore be very time consuming, or for some applications, prohibitively long. Here, we report on the direct deposition of copper using laser-induced forward transfer (LIFT) [3], a technique that uses ultrashort laser pulses to transfer material from a thin-film donor to a receiver substrate, in combination with a novel donor replenishment scheme. We demonstrate the printing of sub-millimetre long copper lines that are a few microns wide and sub-micron in height. The resistivity of the copper lines measured so far is a factor of 10 higher than that of bulk copper, but we will report our most recent results on reduction of printed line resistance through LIFT process parameter optimization.