People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mills, Benjamin
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2021Laser Induced Backwards Transfer (LIBT) of graphene onto glass
- 2020Microscale deposition of 2D materials via laser induced backwards transfer
- 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learningcitations
- 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learning
- 2019Image-based monitoring of high-precision laser machining via a convolutional neural network
- 2017Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin filmscitations
- 2017Laser fabricated nanofoam from polymeric substrates
- 2015Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer filmscitations
- 2014Femtosecond multi-level phase switching in chalcogenide thin films for all-optical data and image processing
- 2013Printing of continuous copper lines using LIFT with donor replenishment
- 2013Chalcogenide-based phase-change metamaterials for all-optical, high-contrast switching in a fraction of a wavelength
- 2009Nanomaterial structure determination using XUV diffraction
Places of action
Organizations | Location | People |
---|
document
Printing of continuous copper lines using LIFT with donor replenishment
Abstract
Metallic deposition is important for an array of scientific and technological applications. Standard deposition techniques include sputtering, evaporation and chemical vapour deposition (CVD) [1], however, these all lack the ability to achieve spatial patterning without subsequent processing steps. Methods such as e-beam lithography and focused ion beam milling can be used for surface patterning of metals and other materials [2], but they generally require vacuum conditions and can therefore be very time consuming, or for some applications, prohibitively long. Here, we report on the direct deposition of copper using laser-induced forward transfer (LIFT) [3], a technique that uses ultrashort laser pulses to transfer material from a thin-film donor to a receiver substrate, in combination with a novel donor replenishment scheme. We demonstrate the printing of sub-millimetre long copper lines that are a few microns wide and sub-micron in height. The resistivity of the copper lines measured so far is a factor of 10 higher than that of bulk copper, but we will report our most recent results on reduction of printed line resistance through LIFT process parameter optimization.