People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grant-Jacob, James A.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Automated 3D labelling of fibroblasts and endothelial cells in SEM-imaged placenta using deep learningcitations
- 2019Automated 3D labelling of fibroblasts in SEM-imaged placenta using deep learning
- 2019Image-based monitoring of high-precision laser machining via a convolutional neural network
- 2018Yb-doped mixed sesquioxide thin films grown by pulsed laser depositioncitations
- 2017Laser fabricated nanofoam from polymeric substrates
- 2017Tailoring the refractive index of films during pulsed laser deposition growth
- 2017Pulsed laser deposition of garnets at a growth rate of 20-microns per hour
- 2016Laser performance of Yb-doped-garnet thin films grown by pulsed laser deposition
- 2016Nanopores within 3D-structured gold film for sensing applications
- 2016PLD growth of complex waveguide structures for applications in thin-film lasers: a 25 year retrospective
- 2016Engineered crystal layers grown by pulsed laser deposition: making bespoke planar gain-media devices
- 2016Pulsed laser deposited crystalline optical waveguides for thin-film lasing devices
- 2015Pulsed laser-assisted fabrication of laser gain media
- 2015Towards fabrication of 10 W class planar waveguide lasers: analysis of crystalline sesquioxide layers fabricated via pulsed laser deposition
- 2015Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer filmscitations
- 2014Pulsed laser deposition of thin films for optical and lasing waveguides (including tricks, tips and techniques to maximize the chances of growing what you actually want)
- 2013Printing of continuous copper lines using LIFT with donor replenishment
- 2012Free-standing nanoscale gold pyramidal films with milled nanopores
- 2009Nanomaterial structure determination using XUV diffraction
Places of action
Organizations | Location | People |
---|
conferencepaper
Free-standing nanoscale gold pyramidal films with milled nanopores
Abstract
Thin films of micro and nanostructured metals are important for the construction of plasmonic devices and microelectromechanical systems (MEMs). The fabrication of individual metallic, pyramidal shells as well as ultra-smooth metal films with grooves, bumps, pyramids and holes has previously been demonstrated1,2, as has direct raster milling with 5 nm machining precision in 100nm thick gold films3. Routine fabrication of micro and nanostructured thin films is desirable. In this work, the fabrication of arrays of nanoscale pyramidal structures in free-standing gold films is demonstrated, and single nanopores are milled into the nanostructures for DNA translocation.<br/><br/>Silicon Klarite® pyramidal micro-structured substrates are an effective tool for surface enhanced Raman scattering (SERS) experiments, owing to the strong field enhancement within the pyramids. Here, the substrates are used as moulds for creating pyramidal structured gold as free-standing thin films. The silicon substrates contain an array of pyramids etched into a 4mm x 4mm square region on the substrate's surface. These pyramids are 1.5µm x 1.5µm square and 1µm deep on a pitch of 2m. An Edwards E306A Thermal Evaporator is used to coat silicon samples in a 50nm layer of Teflon® and then a 100nm layer of gold. Epoxy is then deposited on top of the gold layer using a pipette. Once the epoxy has cured, the epoxy together with the gold is mechanically lifted from the Teflon® coated substrate. The gold-coated epoxy is then placed over a micron-sized aperture and the epoxy dissolved away using acetone. Initial imaging is performed using a Carl Zeiss SMT, Inc., Evo® scanning electron microscope (SEM), while the subsequent imaging and milling of 50 nm holes through the free-standing gold is carried out using an Carl Zeiss SMT, Inc., Orion® Plus helium ion microscope (HIM). These films are suspended over micron-sized apertures for integration into platforms already proven for DNA translocation, and to optically interrogate the structures using Raman based techniques.