Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pernice, Maria Francesca

  • Google
  • 4
  • 6
  • 0

Imperial College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Delamination growth rate in composite laminates under increasing low-velocity impact energycitations
  • 2016Ply-By-Ply Delamination Morphology In Composite Laminates Under Low-Velocity Impactcitations
  • 2016Prediction of delamination migration at a 0°/θ ply interface in composite tape laminatescitations
  • 2014Investigating Delamination Migration in Multidirectional Tape Laminatescitations

Places of action

Chart of shared publication
Gao, Jiangning
1 / 1 shared
Rhead, Andrew T.
2 / 40 shared
Hallett, Stephen R.
2 / 270 shared
Carvalho, Nelson De
1 / 1 shared
Carvalho, Nelson V. De
1 / 2 shared
Ratcliffe, James G.
1 / 2 shared
Chart of publication period
2017
2016
2014

Co-Authors (by relevance)

  • Gao, Jiangning
  • Rhead, Andrew T.
  • Hallett, Stephen R.
  • Carvalho, Nelson De
  • Carvalho, Nelson V. De
  • Ratcliffe, James G.
OrganizationsLocationPeople

document

Delamination growth rate in composite laminates under increasing low-velocity impact energy

  • Gao, Jiangning
  • Rhead, Andrew T.
  • Pernice, Maria Francesca
Abstract

<p>Impact damage, and the reduction in strength it causes, continue to drive sizing of modern composite aircraft components. Despite the morphology of delaminations at interfaces near the non-impact surface of a laminate being critical to compression after impact failure and decades of research, computationally efficient, early-stage analytical design tools for calculating interface-by-interface damage do not yet exist. This study investigates, interface-by-interface, delaminations created by impact tests on carbon fibre/epoxy laminates with different quasi-isotropic stacking sequences each obtained from standard fibre angles. Fifty-three impact tests were performed with a 75mm circular test window under a range of impact energies providing results for 48 stacking sequences. Results show that the morphology of delamination caused by impact damage at each interface depends on the fibre angle of plies bounding the interface and is independent of stacking sequence or interface location within the stacking sequence. Conversely, the extent of delamination at each interface was found to vary with the location of the interface within the stacking sequence. Rate of growth of delamination with increasing impact energy is shown to vary with the difference in ply angle at an interface and some correlation is seen with through thickness distribution of bending and shear stresses during impact. This paper provides experimental data which can inform the development of models for damage development at interfaces near the non-impact surface of composite laminates subject to an impact event.</p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • strength
  • composite
  • impact test
  • isotropic