Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Joseph, Prince

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Residual Stress Map for 75Ni13.5Cr2.7B-3.5Si Clad 316 Stainless Steelcitations

Places of action

Chart of shared publication
Krishnamoorthy, M.
1 / 2 shared
Dey, H. C.
1 / 3 shared
Tafazzolimoghaddam, Behrooz
1 / 2 shared
Moat, Richard J.
1 / 33 shared
Kumar, Hemant
1 / 4 shared
Das, C. R.
1 / 4 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Krishnamoorthy, M.
  • Dey, H. C.
  • Tafazzolimoghaddam, Behrooz
  • Moat, Richard J.
  • Kumar, Hemant
  • Das, C. R.
OrganizationsLocationPeople

article

Residual Stress Map for 75Ni13.5Cr2.7B-3.5Si Clad 316 Stainless Steel

  • Krishnamoorthy, M.
  • Dey, H. C.
  • Tafazzolimoghaddam, Behrooz
  • Joseph, Prince
  • Moat, Richard J.
  • Kumar, Hemant
  • Das, C. R.
Abstract

Plasma Transfer Arc (PTA) process uses the intense heat of electric arc to melt and fuse the 75Ni13.5Cr2.7B-3.5Si hard-facing alloy and the base metal. This process develops substantial residual stresses near the hard-faced surfaces during deposition and subsequent solidification and cool down. Furthermore, when a material interface is present, additional residual stress is formed because of the thermal strain mismatch of the dissimilar materials caused by their different thermal expansion coefficients. These stresses can cause cracks in the overlay during the component’s service life or even earlier during manufacturing which can lead to partial or total loss of the part structural integrity. To start optimizing the process to avoid these defects, it is necessary to know the residual stress distribution in the part and how it is related to the process parameters. Hard-faced components are having distinct microstructures with a step change in material properties, and this makes the residual stress measurement more challenging. This paper presents 2D residual stress maps of the deposit cross sections for PTA hard-faced samples using the contour method. This study is part of an ongoing research on the influence of process parameters on the residual stress and local microstructure of 75Ni13.5Cr2.7B-3.5Si clad 316 stainless steel.

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • surface
  • stainless steel
  • melt
  • crack
  • thermal expansion
  • solidification