People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mottura, Alessandro
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024First-principles calculations of intrinsic stacking fault energies and elastic properties in binary nickel alloyscitations
- 2018First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
- 2018First-principles modeling of the temperature dependence for the superlattice intrinsic stacking fault energies in L12 Ni75-xXxAl25 alloyscitations
- 2018A kinetic Monte Carlo study of vacancy diffusion in non-dilute Ni-Re alloyscitations
- 2017First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compoundscitations
- 2016Alloys-by-designcitations
- 2015High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloyscitations
- 2014Three-dimensional characterization of the permeability of W–Cu composites using a new “TriBeam” techniquecitations
- 2014Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys?citations
- 2014Nickel-rhenium compound sheds light on the potency of rhenium as a strengthener in high-temperature nickel alloyscitations
- 2014Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloyscitations
- 2012A first-principles study of the effect of Ta on the superlattice intrinsic stacking fault energy of L12-Co3(Al,W)citations
- 2010Atom probe tomography analysis of the distribution of rhenium in nickel alloyscitations
- 2010Analysis of atomic-scale phenomena and the rhenium effect in nickel superalloys
- 2008A critique of rhenium clustering in Ni-Re alloys using extended X-ray absorption spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
Abstract
High-throughput quantum mechanics based simulations have been carried out to establish the change in lattice parameter and superlattice intrinsic stacking fault (SISF) formation energies in Ni3Al-based alloys using the axial Ising model. We had direct access to the variation in SISF energies due to finite compositional change of the added ternary transition metal (TM) element through constructing large supercells, which was equally necessary to account for chemical disorder. We find that most added TM ternaries induce an important quasi-linear increase in the SISF energy as a function of alloying composition x. The most pronounced increase corresponds to Fe addition, while Co addition decreases the SISF energy monotonically. Our results shed light on the role played by TM elements on strengthening L12 Ni3Al precipitates against stacking fault shear. The data are of high importance for designing new Ni-based superalloys based on computational approaches.