People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allen, Joshua
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024First-principles calculations of intrinsic stacking fault energies and elastic properties in binary nickel alloyscitations
- 2018First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
- 2018Photoresponse of inorganic-organic thin film composites based on chalcogenide glasses ; Foto-odezva anorganicko-organických tenkovrstevnatých kompozitů na bázi chalkogenidových skel
- 2017First-principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compoundscitations
Places of action
Organizations | Location | People |
---|
article
First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys
Abstract
High-throughput quantum mechanics based simulations have been carried out to establish the change in lattice parameter and superlattice intrinsic stacking fault (SISF) formation energies in Ni3Al-based alloys using the axial Ising model. We had direct access to the variation in SISF energies due to finite compositional change of the added ternary transition metal (TM) element through constructing large supercells, which was equally necessary to account for chemical disorder. We find that most added TM ternaries induce an important quasi-linear increase in the SISF energy as a function of alloying composition x. The most pronounced increase corresponds to Fe addition, while Co addition decreases the SISF energy monotonically. Our results shed light on the role played by TM elements on strengthening L12 Ni3Al precipitates against stacking fault shear. The data are of high importance for designing new Ni-based superalloys based on computational approaches.