People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ilie, Sergiu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigating the Origin of Non-Metallic Inclusions in Ti-Stabilized ULC Steels Using Different Tracing Techniquescitations
- 2023Different Approaches to Trace the Source of Non-Metallic Inclusions in Steel
- 2023Application of tracing techniques to determine the source of alumina inclusions in the clogging layer of Ti-stabilized ULC steels
- 2023Classification of peritectic steels by experimental methods, computational thermodynamics and plant data: An Overview
- 2023Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
- 2023Comparison of tracing deoxidation products with rare earth elements in the industry and on a laboratory scale
- 2022High temperature thermodynamics of the Fe-C-Mn system; new experimental data for the Fe-C-10 and 20 wt.-% Mn system
- 2022Different Approaches to Trace the Source of Non-Metallic Inclusions in Steelcitations
- 2022A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steelcitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Thermomechanical and Microstructural Analysis of the Influence of B- and Ti-Content on the Hot Ductility Behavior of Microalloyed Steelscitations
- 2021Investigations on hot tearing in a continuous slab caster: Numerical modelling combined with analysis of plant results
- 2020Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3Dcitations
- 2019Investigation of water droplet impingement under conditions of the secondary cooling zone of a continuous caster
- 2019High precious phase diagrams – a roadmap for a successful casting processing
- 2016HT-LSCM - A valuable tool for surface microstructure investigations
- 2012Hot deformation behaviour of low alloyed steelcitations
- 2012Influence of Strain Rate on Hot Ductility of a V-Microalloyed Steel Slabcitations
Places of action
Organizations | Location | People |
---|
document
Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
Abstract
The current status of developing a self-consistent thermodynamic database for tramp elements (Fe-C-Cu-Sn-S) and impurities (Fe-C-P) in steel is presented. The binary and ternary subsystems were modeled according to the CALPHAD-approach, enabling precise calculations of phase diagrams and thermodynamic properties of multicomponent steel. The Modified Quasichemical Model (MQM) was used to formulate the Gibbs energy of the liquid phase to consider the strong short-range ordering (SRO) tendency between metal M (M = Fe, Cu, Sn) and nonmetal (S and P) in melts. Ferrite (α-Fe, BCC) and austenite (γ-Fe, FCC) solid solutions and intermediate phases were treated by the Compound Energy Formalism (CEF). Numerous compounds, e.g. phosphides and higher-order sulfides, were modeled stoichiometrically. In the first part, the modeling of the selected quaternary Fe-C-Cu-Sn subsystem is presented and applications in calculating solid/liquid phase equilibria with respect to liquid metal embrittlement are shown. Based on the previously assessed Fe-C-P system, the approach of linking of thermodynamic databases to an in-house developed solidification model for continuous casting is introduced. It is demonstrated how to extract relevant data from computational thermodynamics for microsegregation modeling of steel. Finally, future requirements on experimental research and modeling work in the field of tramp element containing steel will be critically discussed.