People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kang, Youn-Bae
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024In situ study and assessment of the phosphorus-induced solute drag effect on the grain boundary mobility of austenitecitations
- 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S
- 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steelcitations
- 2023Grain boundary mobility of γ-Fe in high-purity iron during isothermal annealingcitations
- 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gapcitations
- 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometrycitations
- 2023Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
- 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systemscitations
- 2016Study on Oxide Inclusion Dissolution in Secondary Steelmaking Slags using High Temperature Confocal Scanning Laser Microscopycitations
Places of action
Organizations | Location | People |
---|
document
Impurities and tramp elements in steel: Thermodynamic aspects and the application to solidification processes
Abstract
The current status of developing a self-consistent thermodynamic database for tramp elements (Fe-C-Cu-Sn-S) and impurities (Fe-C-P) in steel is presented. The binary and ternary subsystems were modeled according to the CALPHAD-approach, enabling precise calculations of phase diagrams and thermodynamic properties of multicomponent steel. The Modified Quasichemical Model (MQM) was used to formulate the Gibbs energy of the liquid phase to consider the strong short-range ordering (SRO) tendency between metal M (M = Fe, Cu, Sn) and nonmetal (S and P) in melts. Ferrite (α-Fe, BCC) and austenite (γ-Fe, FCC) solid solutions and intermediate phases were treated by the Compound Energy Formalism (CEF). Numerous compounds, e.g. phosphides and higher-order sulfides, were modeled stoichiometrically. In the first part, the modeling of the selected quaternary Fe-C-Cu-Sn subsystem is presented and applications in calculating solid/liquid phase equilibria with respect to liquid metal embrittlement are shown. Based on the previously assessed Fe-C-P system, the approach of linking of thermodynamic databases to an in-house developed solidification model for continuous casting is introduced. It is demonstrated how to extract relevant data from computational thermodynamics for microsegregation modeling of steel. Finally, future requirements on experimental research and modeling work in the field of tramp element containing steel will be critically discussed.