People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feuchter, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Morphological structure and mechanical properties of a nucleated Polyoxymethylene (POM) homopolymer resin processed under conventional injection molding conditions
- 2024Impact Characteristics and Repair Approaches of Distinct Bio-Based Matrix Composites: A Comparative Analysiscitations
- 2024Effect of different weft-knitted structures on the mechanical performance of bio-based flexible compositescitations
- 2024Manufacturing bio-based fiber-reinforced polymer composites: Process performance in RTM and VARI processescitations
- 2023Impact of Multiple Reprocessing on Properties of Polyhydroxybutyrate and Polypropylenecitations
- 2023Tensile properties of flexible composites with knitted reinforcements from various yarn materialscitations
- 2023Investigation of the Mechanical Properties of Sandwich Composite Panels Made with Recyclates and Flax Fiber/Bio-Based Epoxy Processed by Liquid Composite Moldingcitations
- 2022Dynamic mechanical response in epoxy nanocomposites incorporating various nano-silica architectures
- 2022Towards virtually optimized curing cycles for polymeric encapsulations in microelectronicscitations
- 2022Injection Molding Simulation of Polyoxymethylene Using Crystallization Kinetics Data and Comparison with the Experimental Processcitations
- 2021Thermal and Moisture Dependent Material Characterization and Modeling of Glass Fibre Reinforced Epoxy Laminates
- 2021Prediction of Curing Induced Residual Stresses in Polymeric Encapsulation Materials for Microelectronicscitations
- 2020Exploiting the Carbon and Oxa Michael Addition Reaction for the Synthesis of Yne Monomerscitations
- 2018Influence of environmental factors like temperature and humidity on MEMS packaging materials.citations
Places of action
Organizations | Location | People |
---|
article
Thermal and Moisture Dependent Material Characterization and Modeling of Glass Fibre Reinforced Epoxy Laminates
Abstract
The Micro-Electro-Mechanical Semiconductor (MEMS) sensor packages are an advanced multimaterial composite system. These packages comprise polymeric materials like prepregs, solder-mask, insulation, and conductive adhesives. Prepregs are glass fiber reinforced epoxy laminates. Only a low material sensitivity to environmental influences will ensure the sensors' reliable performance during their application lifetime. To this end, the potentially applied materials undergo defined thermal and moisture-dependent material characterization. In this contribution, the influence of moisture and temperature has been studied for five different prepreg materials, which are commonly applied as a substrate material in a MEM'S sensor. The measured thermal and moisture dependent material properties are the basis for a numerical diffusion analysis and a virtual hygro-thermomechanical reliability assessment.