People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Delgado-Aguilar, Marc
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Development of P(3HB-co-3HHx) nanohydroxyapatite (nHA) composites for scaffolds manufacturing by means of fused deposition modelingcitations
- 2023Lignin-Containing Cellulose Nanofibrils from TEMPO-Mediated Oxidation of Date Palm Waste: Preparation, Characterization, and Reinforcing Potentialcitations
- 2023Response of Polypropylene Composites Reinforced with Natural Fibers: Impact Strength and Water-Uptake Behaviorscitations
- 2022Valorization ofkraft lignin from black liquor in the production of composite materials with poly(caprolactone) and natural stone groundwood fiberscitations
- 2022Processing Polymer Blends of Mater-Bi® and Poly-L-(Lactic Acid) for Blown Film Application with Enhanced Mechanical Strengthcitations
- 2020High-Yield Lignocellulosic Fibers from Date Palm Biomass as Reinforcement in Polypropylene Composites: Effect of Fiber Treatment on Composite Properties
- 2020Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applicationscitations
- 2020Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young's Modulus
- 2017Sugarcane bagasse reinforced compositescitations
- 2016Tensile strength assessment of injection-molded high yield sugarcane bagasse-reinforced polypropylenecitations
- 2016Starch-based biopolymer reinforced with high yield fibers from sugarcane bagasse as a technical and environmentally friendly alternative to high density polyethylenecitations
- 2016Cellulose nanofibers modified with alkyl ketene dimer for oil absorbent aerogels
Places of action
Organizations | Location | People |
---|
article
Cellulose nanofibers modified with alkyl ketene dimer for oil absorbent aerogels
Abstract
<p>Nanofibrillated cellulose consists of interconnected cellulose nanofibers, isolated from wood or agricultural byproducts, which leads to a three dimensional, porous and flexible structure. In this sense, the present work aims to develop hydrophobic aerogels for oil absorbing. Different percentages of alkyl ketene dimcr (AKD) were added to the cellulose nanofiber (CNF) gel in order to partially hydrophobize the surface thereof. After mechanical stirring in an Ultraturrax and two cycles of sonication at 80 watts for 2 minutes, the CNF gel was poured into aluminum dishes and frozen at - 80C for two hours. Then, the samples were freeze-dried for 48 hours. Water and oil absorption capacity was determined both under static and dynamic conditions in an oil-water mixture.</p>