People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Möller, Mauritz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Spatially tailored laser energy distribution using innovative optics for gas-tight welding of casted and wrought aluminum alloys in e-mobilitycitations
- 2022Laser Metal Deposition of AlSi10Mg with high build ratescitations
- 2018Quality target-based control of geometrical accuracy and residual stresses in laser metal depositioncitations
- 2018From powder to solid: The material evolution of Ti-6Al-4V during laser metal depositioncitations
- 2018Laser metal deposition of titanium parts with increased productivity
- 2017Characterization of the anisotropic properties for laser metal deposited Ti-6Al-4 V
- 2017Laser metal deposition of Ti-6Al-4V structures: Analysis of the build height dependent microstructure and mechanical propertiescitations
- 2016Analysis of residual stress formation in additive manufacturing of Ti-6Al-4V
- 2016Evolutionary-based design and control of geometry aims for AMD-manufacturing of Ti-6Al-4V parts
- 2016Evolutionary-based design and control of geometry aims for AMD-manufacturing of Ti-6Al-4V parts ...
Places of action
Organizations | Location | People |
---|
article
Characterization of the anisotropic properties for laser metal deposited Ti-6Al-4 V
Abstract
Laser metal deposition (LMD) connected with milling processes offers the opportunity for an efficient, resource conserving manufacturing for large structural components made from Ti-6Al-4 V. Conventional manufacturing routes for example in the aerospace industry come along with up to 95% of the waste material that has to be machined from the bulk material. LMD is an additive manufacturing process building parts based on nozzle-fed powder by laser solidification. This technology offers unique advantages for the production of near net-shape parts. In contrast to the powder bed-based technologies, it also provides a higher productivity rate. Today, LMD lacks reproducible process strategies manufacturing large parts in narrow tolerances and predictable microstructural properties. The building height of a single layer and the geometrical shape of a three-dimensional shaped part alter progressively with increasing part dimensions, consecutively leading to a higher effort in the manufacturing-process development for such parts. To reduce this effort, in this paper, first the actual state of the anisotropic properties is investigated for LMD-manufactured parts to obtain thorough knowledge of the process and shape-related dependencies with the quality aims. A preliminary experimental investigation of the shape and process-dependent properties such as the microstructure (chemistry changes and grain sizes), mechanical properties (hardness), and geometry (tolerances) is conducted. Based on these results, an in-depth study with optimized parameter sets is carried out to identify the linkage between geometry, process parameters, and the quality criteria of the part, using methods such as light microscopy, inductively coupled plasma-mass spectrometry, Vickers hardness, coordinate measuring, and laser scanning microscopy. For this purpose, representative shaped specimens are manufactured with the LMD-process through different optimized process strategies. The results give the opportunity to evaluate the impact of process ...