People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jothi Prakash, Vishnuu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
booksection
Laser metal deposition of titanium parts with increased productivity
Abstract
Laser Metal Deposition (LMD), an additive manufacturing technique, is described here as an alternate for conventional manufacturing process to build aerospace components. Traditional milling of thin-walled, ribbed-, lightweight, high-valued Titanium structures generate machining wastes as high as 95%. This paper presents an LMD system setup along with an adapted manufacturing process chain for fabrication of near-net shaped Ti-6Al-4V components. Demonstrator parts built using the system setup are then shown.