Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murphy, W. R.

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2005Polymorphism and crystallisation in metallocene PP-copolymer nanocompositescitations
  • 2005Optimise organoclay exfoliation in polymer nanocomposites by customising the extrusion temperature gradientcitations

Places of action

Chart of shared publication
Major, Ian
2 / 41 shared
Lew, C. Y.
2 / 5 shared
Mcnally, G. M.
2 / 10 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Major, Ian
  • Lew, C. Y.
  • Mcnally, G. M.
OrganizationsLocationPeople

document

Polymorphism and crystallisation in metallocene PP-copolymer nanocomposites

  • Major, Ian
  • Lew, C. Y.
  • Murphy, W. R.
  • Mcnally, G. M.
Abstract

<p>The structures, polymorphism and crystallisation behaviour of a range of maleated and acrylated polypropylene (PP) layered-silicate nanocomposites were studied using wide-angle X-ray diffraction (WAXD), small-angle X-ray diffraction (SAXD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques. The dispersed silicate layers were shown to restrict the γ-crystalline phase and selectively suppress the (220), (040) and (060) crystallographic planes of the PP. The PP crystallinity and crystallisation temperature decreased with an increasing degree of layered-silicate intercalation and exfoliation, by up to 26% and 10 degC respectively. This is attributed partly to interaction of the polymer and layered-silicate with the compatibiliser. The unique damping mechanism of the silicate layers reduced the PP β-phase glass transition temperature (T<sub>g</sub>). The endothermic crystalline peak pattern of the compatibiliser, determined by DSC was found to be a novel technique for characterising the degree of layered-silicate exfoliation in the PP matrix.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • crystalline phase
  • glass
  • glass
  • layered
  • transmission electron microscopy
  • glass transition temperature
  • differential scanning calorimetry
  • copolymer
  • crystallinity
  • dynamic mechanical analysis
  • wide-angle X-ray diffraction
  • small-angle X-ray diffraction