People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Milčius, Darius
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2022On the structure of SbTeIcitations
- 2020Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasmacitations
- 2019Black carbon-doped TiO2 films : synthesis, characterization and photocatalysiscitations
- 2018A new method of nanocrystalline nickel powder formation by magnetron sputtering on the water-soluble substratescitations
- 2017Hydrogen generation based on aluminum-water reaction for fuel cell applicationscitations
- 2017Stannate increases hydrogen evolution overpotential on rechargeable alkaline iron electrodescitations
- 2017Generation of hydrogen by the reaction between plasma modified aluminium and watercitations
- 2014Reaction of aluminum with water to produce hydrogen
- 2013The investigation of e-beam deposited titanium dioxide and calcium titanate thin filmscitations
- 2012Synthesis and characterization of multilayered GDC and SDC thin films deposited by e-beam technique
- 2012Substrate effects on formation and hydrogenation of Mg-Ni filmscitations
- 2011Scandium stabilized zirconium thin films formation by e-beam techniquecitations
- 2011The properties of scandium and cerium stabilized zirconium thin films formed by e-beam techniquecitations
- 2011Synthesis and characterization of GDC solid electrolytes obtained by solid state sintering of multilayer thin filmscitations
- 2011Influence of initial powder particle size on yttrium stabilized zirconium thin films formed by e-beam techniquecitations
- 2010A mechanically switchable metal-insulator transition in Mg2NiH4 discovers a strain sensitive, nanoscale modulated resistivity connected to a stacking faultcitations
- 2010The properties of gadolinium doped cerium oxide thin films formed evaporating nanopowder ceramic
- 2010Synthesis of gadolinium doped ceria solid electrolyte by solid state reactions of CeO2/Gd2O3 multilayer thin films
- 2009Porosity evaluation of TiO2 thin films deposited using pulsed DC-magnetron sputtering
- 2009The effects of dynamic structural transformations on hydrogenation properties of Mg and MgNi thin filmscitations
- 2009Titanium oxide thin films synthesis by pulsed – DC magnetron sputteringcitations
- 2009The properties of samarium doped ceria oxide thin films grown by e-beam deposition techniquecitations
- 2008Hydrogen storage in Mg-based nanocrystalline metal hydrides
- 2008Reactive pulsed - dc magnetron sputtering of Cr2O3 thin films
- 2007Failure analysis by indentation test of electrodeposited nanocrystalline CO-W and FE-W thin films
- 2007Influence of ion irradiation effects on the hydriding behavior of nanocrystalline Mg–Ni filmscitations
- 2007Formation of gadolinium doped ceria oxide thin films by electron beam deposition
- 2005Hydrogen storage in the bubbles formed by high-flux ion implantation in thin Al filmscitations
- 2005Synthesis of Mg(AlH4)(2) in bilayer Mg/Al thin films under plasma immersion hydrogen ion implantation and thermal desorption processescitations
Places of action
Organizations | Location | People |
---|
article
Porosity evaluation of TiO2 thin films deposited using pulsed DC-magnetron sputtering
Abstract
Titanium oxide (TiO2) thin films (1 mu m - 4 mu m thickness) were deposited on porous Hastelloy-X substrates using pulse dc-magnetron sputtering. The optimal discharge power (400 W), distance between magnetron Ti cathode and substrate (3 cm) were estimated experimentally. When the discharge power, distance between magnetron and substrate was kept constant (optimal), other technological parameters such as bias voltage and oxygen partial pressure were changed to produce higher density films. The optical, structural properties, densification process and porosity of titanium oxide (TiO2) thin films were investigated. The crystal phase, crystallite size and micro stresses of formed TiO2 thin films were estimated from XRD measurements. The surface microstructure and the cross section were investigated with SEM. The optical properties were analyzed with ellipsometer (632.8 nm) and the porosity was estimated from the varied values of refractive index. The results show that refractive index changes slightly (from 2.84 to 2.75) with increase of the oxygen partial pressure from 1.3 Pa to 5.9 Pa and formed TiO2 thin films start to be denser. The growth rate of thin films decreases nearly 15% with adding the bias voltage to the substrate during the deposition. The refractive index changes from 2.80 to 2.51 with increase of bias voltage from 0 V to - 150 V, and the deposited thin films start to be denser, also. Experimental results showed that formation of pure titanium oxide thin films were observed in all experimental cases. Only crystallite sizes and orientation were changed.