People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jakobsen, Stig Storgaard
Aarhus University Hospital
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2013No positive effect of Acid etching or plasma cleaning on osseointegration of titanium implants in a canine femoral condyle press-fit modelcitations
- 2012Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitiscitations
- 2012Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implantscitations
- 2010Acid etching does not improve CoCrMo implant osseointegration in a canine implant model
- 2007Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney.citations
Places of action
Organizations | Location | People |
---|
article
Acid etching does not improve CoCrMo implant osseointegration in a canine implant model
Abstract
Induction of bone ingrowth by topographical changes to implant surfaces is an attractive concept. Topographical modifications achieved by acid etching are potentially applicable to complex 3D surfaces. Using clinically relevant implant models, we explored the effect of wet etching porous bead-coated CoCrMo. The study was designed as two paired animal experiments with 10 dogs. Each dog received four implants; one in each medial femoral condyle (loaded 0.75-mm-gap model) and one in each proximal tibia (press-fit). The implants were observed for 6 weeks and were evaluated by biomechanical pushout tests and histomorphometry. We found that wet etching porous bead-coated CoCrMo implants failed to improve implant performance. Moreover, a tendency towards increased fibrous tissue formation, decreased new bone formation, and decreased mechanical fixation was observed. Surface topography on implants is able to stimulate bone-forming cells, but the clinical performance of an implant surface perhaps relies more on 3D geometrical structure and biocompatibility. Caution should be exercised regarding the results of wet etching of porous bead-coated CoCrMo and there is a need for more preclinical trials.