People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hazrati, Javad
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023The effect of heating stage parameters on AlSi coating microstructure and fracture at high temperaturescitations
- 2022Surface Texture Design for Sheet Metal Forming Applicationscitations
- 2021Investigating AlSi coating fracture at high temperatures using acoustic emission sensorscitations
- 2021Numerical and experimental studies of AlSi coating microstructure and its fracture at high temperaturescitations
- 2021Modeling boundary friction of coated sheets in sheet metal formingcitations
- 2021Mixed lubrication friction model including surface texture effects for sheet metal formingcitations
- 2020Characterization of yield criteria for zinc coated steel sheets using nano-indentation with knoop indentercitations
- 2020Semi-analytical contact model to determine the flattening behavior of coated sheets under normal loadcitations
- 2020Analytical, numerical and experimental studies on ploughing behaviour in soft metallic coatingscitations
- 2019Characterization of interfacial shear strength and its effect on ploughing behaviour in single-asperity slidingcitations
- 2019Modelling of ploughing in a single-asperity sliding contact using material point methodcitations
- 2018Temperature dependent micromechanics-based friction model for cold stamping processescitations
- 2018Modeling crack initiation in Al-Si coating during heating/quenching phase of hot stamping process
- 2018The effects of temperature on friction and wear mechanisms during direct press hardening of Al-Si coated ultra-high strength steelcitations
- 2018An insight in friction and wear mechanisms during hot stampingcitations
- 2017Plasticity and fracture modeling of three-layer steel composite Tribond® 1200 for crash simulation
- 2017Friction and Wear Mechanisms During Hot Stamping of AlSi Coated Press Hardening Steelcitations
Places of action
Organizations | Location | People |
---|
document
Plasticity and fracture modeling of three-layer steel composite Tribond® 1200 for crash simulation
Abstract
A constitutive model is presented for the three-layer steel composite Tribond® 1200. Tribond® is a hot forming steel which consists of three layers: a high strength steel core between two outer layers of ductile low strength steel. The model is designed to provide an accurate prediction of the deformation behavior of the material up to the point of fracture. Moreover, it includes a fracture prediction criterion that accounts for the complex loading paths experienced by the material in the event of a crash. For calibration of the material model, experiments are performed both with core layer only and with full Tribond® specimens. Separate plasticity and fracture models are calibrated based on these experiments. The transition zone between the layers is modeled by interpolating between the calibrated models. The strain hardening models are calibrated using an inverse FEM optimization routine, that takes into account measured force–displacement curves and strain fields. The fracture behavior is represented by a stress triaxiality and Lode angle dependent, strain-based fracture criterion. Five different fracture tests are used to obtain data at different stress states: notched and central-hole tensile tests, a shear test, a bulge test and a bending test. The model is validated with a bending-dominated L-section compression test.