People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huetink, Han
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2012Free Surface Modeling of Contacting Solid Metal Flows Employing the ALE formulationcitations
- 2010Effect of Thickness Stress in Stretch-Bending
- 2007Deterministic and robust optimisation strategies for metal forming proceesses
- 2007A metamodel based optimisation algorithm for metal forming processescitations
- 2006Simulation of thermo-mechanical aluminium sheet formming
- 2006Large deformation simulation of anisotropic material
- 2006A comparison between optimisation algorithms for metal forming processes
- 2006Non-proportional tension-shear experiments in a biaxial test facility
- 2006Simulation of aluminium sheet forming at elevated temperaturescitations
- 2004Modelling of aluminium sheet material at elevated temperatures
- 2003Prediction of sheet necking with shell finite element models
- 2000Improvements in FE-analysis of real-life sheet metal forming
- 2000Anisotropic yield functions in a co-rotating reference frame
Places of action
Organizations | Location | People |
---|
document
Non-proportional tension-shear experiments in a biaxial test facility
Abstract
This paper discusses the results obtained from experiments on DC06 mild steel with a biaxial test facility. The two presented tests are non-proportional tests consisting of a two stage strain path. First the samples are deformed in the tensile direction after which simple shear deformation is applied. In the one case elastic unloading is applied after the tensile deformation, while in the other case the tensile deformation is directly followed by the simple shear deformation. For the test with elastic unloading a peak in the shear stress appears directly after the strain path change, while in the test without elastic unloading the shear stress gradually increases to a uniform stress-strain curve. The difference in the result is explained with reference to the microstructure evolution.