People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huetink, H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Finite element simulation of aluminum sheet warm forming using alflow hardening model
Abstract
In order to accurately model the plastic deformation of Aluminum sheet at elevated temperatures, a model is required that incorporate the temperature and strain rate dependency of the material. In this article, two physically based models are compared: Bergström and Alflow model. Although both models can be fit quite well to monotonic tensile tests of 5754-O alloy, large differences appear if strain rate jumps are applied. The Alflow model also represents the negative strain rate sensitivity behavior of Al-Mg alloys at temperatures below 125±C.