People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bonte, M. H. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2008An optimisation strategy for industrial metal forming processescitations
- 2007Modelling, screening, and solving of optimisation problems: Application to industrial metal forming processes
- 2007A Robust Optimisation Strategy for Metal Forming Processescitations
- 2007Deterministic and robust optimisation strategies for metal forming proceesses
- 2007A metamodel based optimisation algorithm for metal forming processescitations
- 2006A comparison between optimisation algorithms for metal forming processes
- 2006Optimising towards robust metal forming processes
Places of action
Organizations | Location | People |
---|
document
Modelling, screening, and solving of optimisation problems: Application to industrial metal forming processes
Abstract
Coupling Finite Element (FEM) simulations to mathematical optimisation techniques provides a high potential to improve industrial metal forming processes. In order to optimise these processes, all kind of optimisation problems need to be mathematically modelled and subsequently solved using an appropriate optimisation algorithm. Although the modelling part greatly determines the final outcome of optimisation, the main focus in most publications until now was on the solving part of mathematical optimisation, i.e. algorithm development. Modelling is generally performed in an arbitrary way. In this paper, we propose an optimisation strategy for metal forming processes using FEM. It consists of three stages: a structured methodology for modelling optimisation problems, screening for design variable reduction, and a generally applicable optimisation algorithm. The strategy is applied to solve manufacturing problems for an industrial deep drawing process.