People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huetink, Han
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2012Free Surface Modeling of Contacting Solid Metal Flows Employing the ALE formulationcitations
- 2010Effect of Thickness Stress in Stretch-Bending
- 2007Deterministic and robust optimisation strategies for metal forming proceesses
- 2007A metamodel based optimisation algorithm for metal forming processescitations
- 2006Simulation of thermo-mechanical aluminium sheet formming
- 2006Large deformation simulation of anisotropic material
- 2006A comparison between optimisation algorithms for metal forming processes
- 2006Non-proportional tension-shear experiments in a biaxial test facility
- 2006Simulation of aluminium sheet forming at elevated temperaturescitations
- 2004Modelling of aluminium sheet material at elevated temperatures
- 2003Prediction of sheet necking with shell finite element models
- 2000Improvements in FE-analysis of real-life sheet metal forming
- 2000Anisotropic yield functions in a co-rotating reference frame
Places of action
Organizations | Location | People |
---|
document
Modelling of aluminium sheet material at elevated temperatures
Abstract
The formability of Al–Mg sheet can be improved considerably, by increasing the temperature. At elevated temperatures, the mechanical response of the material becomes strain rate dependent. To accurately simulate warm forming of aluminium sheet, a material model is required that incorporates the temperature and strain-rate dependency. In this paper hardening is described succesfully with a physically based material model for temperatures up to 200 ◦C. At higher temperatures and very low strain rates, the flow curve deviates significantly from the model. Strain rate jumps still pose a serious problem to the models