Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonte, M. H. A.

  • Google
  • 7
  • 9
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2008An optimisation strategy for industrial metal forming processes57citations
  • 2007Modelling, screening, and solving of optimisation problems: Application to industrial metal forming processescitations
  • 2007A Robust Optimisation Strategy for Metal Forming Processes1citations
  • 2007Deterministic and robust optimisation strategies for metal forming proceessescitations
  • 2007A metamodel based optimisation algorithm for metal forming processes42citations
  • 2006A comparison between optimisation algorithms for metal forming processescitations
  • 2006Optimising towards robust metal forming processescitations

Places of action

Chart of shared publication
Van Den Boogaard, Ton
7 / 135 shared
Huétink, J.
1 / 3 shared
Veldman, E.
1 / 1 shared
Ravenswaaij, R. Van
1 / 1 shared
Huetink, Han
3 / 13 shared
Habbal, A.
1 / 1 shared
Fourment, L.
1 / 1 shared
Do, D. T. D.
1 / 1 shared
Carleer, B. D.
1 / 1 shared
Chart of publication period
2008
2007
2006

Co-Authors (by relevance)

  • Van Den Boogaard, Ton
  • Huétink, J.
  • Veldman, E.
  • Ravenswaaij, R. Van
  • Huetink, Han
  • Habbal, A.
  • Fourment, L.
  • Do, D. T. D.
  • Carleer, B. D.
OrganizationsLocationPeople

document

Optimising towards robust metal forming processes

  • Bonte, M. H. A.
  • Carleer, B. D.
  • Van Den Boogaard, Ton
Abstract

Product improvement and cost saving have always been important goals in the metal forming industry. Numerical optimisation can help to achieve these goals, but optimisation with a deterministic approach will often lead to critical process settings, such that the slightest variation in e.g. material behaviour will result in violation of constraints. To avoid a high scrap ratio, process robustness must be considered in the optimisation model. Optimising for robustness includes Robust Manufacturing (RM) techniques, Optimisation Under Uncertainty (OUU) methods and Finite Element (FEM) simulations of the processes. In this paper, we review RM and OUU. Subsequently, the combination of Statistical Process Control (SPC), robust and reliability based optimisation methods, and FEM-based process simulation implemented in AutoForm-Sigma is presented. An automotive deep drawing application demonstrates the potential of strategies that optimise towards robust metal forming processes.

Topics
  • impedance spectroscopy
  • simulation
  • drawing