People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Perdahcioglu, Emin Semih
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Periodic Homogenization in Crystal Plasticity
- 2020An RVE-Based Study of the Effect of Martensite Banding on Damage Evolution in Dual Phase Steelscitations
- 2019Prediction of void growth using gradient enhanced polycrystal plasticitycitations
- 2018Investigation of microstructural features on damage anisotropy
- 2018Investigation of anisotropic damage evolution in dual phase steels
- 2017Implementation and application of a gradient enhanced crystal plasticity modelcitations
- 2017Numerical investigation of void growth with respect to lattice orientation in bcc single crystal structure
- 2016Constitutive modeling of hot horming of austenitic stainless steel 316LN by accounting for recrystallization in the dislocation evolution
- 2013Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steelscitations
- 2013Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texturecitations
Places of action
Organizations | Location | People |
---|
document
Investigation of anisotropic damage evolution in dual phase steels
Abstract
Dual phase (DP) steels have been extensively used in automotive industry due to combination of versatile properties such as; high strength to weight ratio and good formability. The origin of these properties are based on the complex microstructural features. In DP steels, it is very common to have banded microstructural features due to production conditions. DP steels are composed of mainly soft ferrite and 15-20 vol\% hard martensite phases. During metal forming processes, the contrast in mechanical properties leads to strong and highly heterogeneous strain partitioning which in turn causes anisotropic damage nucleation and evolution, and different damage mechanisms.Therefore, it is both scientifically and industrially important to understand main reasons and consequences of damage anisotropy.In this research, the effect of microstructural anisotropy of DP600 on damage is studied by conducting tensile tests along rolling and transverse directions and evolution of damage is investigated by means of microscopical characterization techniques. Three different damage mechanisms have been observed during deformation of DP600 steel; void formation between ferrite-martensite interface, around unwanted inclusions and cracking of martensite.