Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Den Bulcke, Laure

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021To blend or not to blend? The role of morphological traits for the detection of marine macrobenthos in bulk DNA and eDNA from the ethanol preservativecitations

Places of action

Chart of shared publication
Hostens, Kris
1 / 2 shared
Ampe, Bart
1 / 3 shared
De Backer, Annelies
1 / 1 shared
Wittoeck, Jan
1 / 2 shared
Vanhollebeke, Joran
1 / 2 shared
Derycke, Sofie
1 / 2 shared
Hillewaert, Hans
1 / 2 shared
Maes, Sara
1 / 2 shared
Haegeman, Annelies
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hostens, Kris
  • Ampe, Bart
  • De Backer, Annelies
  • Wittoeck, Jan
  • Vanhollebeke, Joran
  • Derycke, Sofie
  • Hillewaert, Hans
  • Maes, Sara
  • Haegeman, Annelies
OrganizationsLocationPeople

document

To blend or not to blend? The role of morphological traits for the detection of marine macrobenthos in bulk DNA and eDNA from the ethanol preservative

  • Hostens, Kris
  • Ampe, Bart
  • Van Den Bulcke, Laure
  • De Backer, Annelies
  • Wittoeck, Jan
  • Vanhollebeke, Joran
  • Derycke, Sofie
  • Hillewaert, Hans
  • Maes, Sara
  • Haegeman, Annelies
Abstract

The impact of methodological choices on the reliability and reproducibility of DNA metabarcoding need to be well understood to allow successful implementation in routine monitoring frameworks. For macrobenthos communities, the metabarcoding protocol focuses on a fragment of the mitochondrial COI gene and depending on the primer set used for amplification of COI, different taxa can be detected.To identify the primer set that allows the best diversity estimates for macrobenthos in the North Sea region, we sampled four distinct and well characterised communities and identified macrobenthos using traditional morpho-taxonomy before molecular processing. Of the five primer sets tested, the Leray primer set yielded the highest number of non-chimeric reads, detected the highest number of macrobenthos species and best recovered beta diversity patterns. Despite the availability of a nearly complete reference database, 19 out of the 59 morphological species were not picked up with DNA metabarcoding. Next to primer choice, the DNA source used in metabarcoding studies can affect whether or not a species is detected. DNA can be extracted from bulk specimens or from the ethanol preservative in which the macrobenthos sample was preserved. The latter DNA source would greatly speed up processing time of samples in the laboratory. We therefore compared species detection in bulk DNA and eDNA from the ethanol preservative from the four macrobenthos communities in the North Sea. Our results show that community composition differed significantly between bulk DNA and eDNA samples, but both sample types are able to differentiate the four macrobenthos communities from the North Sea. Of the 49 species that are detected in both sample types, 27 are also found in the morphological dataset. The 14 species that are exclusively detected in the ethanol preservative are mainly pelagic species. In view of the low read numbers allocated to these species (at most 153 reads) they most likely represent “contaminant” DNA molecules that are attached to the specimens or the organic debris. To better understand the different results between bulk DNA and eDNA from the ethanol preservative, we investigated the importance of four categorical traits in explaining the probability of detecting a species in the two sample types: body, larval stage (benthic or pelagic), longevity and body skeleton (chitin, CaCO3 or soft tissue). A generalized linear mixed effects model approach shows that the probability of detecting a species in the eDNA from the ethanol preservative is significantly lower than for bulk DNA for macrobenthos species having small to medium body size and for species having chitine or CaCO3 in their skeleton. In contrast, detection in the bulk DNA samples is not affected by the investigated traits. Although the ethanol preservative can be used to characterize beta diversity patterns, our results show that monitoring of macrobenthos species will be most robust when using bulk DNA as template for metabarcoding.

Topics
  • impedance spectroscopy