People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Garthaus, Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2025Inside hybridization of CF/PAEK hollow profiles by means of injection molding
- 2023Inside hybridization of CF/PAEK hollow profiles by means of injection molding
- 2016Forming of carbon fiber reinforced thermoplastic composite tubes - Experimental and numerical approachescitations
- 2016Entwicklung von automatisiert herstellbaren Textil-Thermoplast-Tragrahmenstrukturen mit hoher Funktionsintegration für Elektromobilitätsanwendungen (TherMobility)
- 2016Funktionalisierte Faser-Thermoplast-Profilstrukturencitations
- 2016Verfahren zur Herstellung von FKV-Hohlstrukturen mit thermoplastischem Matrixmaterial
- 2015Verfahren zur Herstellung von Strukturelementen aus Funktionselement und Faser-Kunststoff-Verbund-Hohlprofil und Strukturelemente
- 2015Verfahren zur Herstellung von Lasteinleitungs-Flanschen an faserverstärkten Hohlprofilen mit thermoplastischer Matrix
- 2015Verfahren zur Herstellung von Strukturelementen aus Lasteinleitungselement und Faser-Kunststoff-Verbund-Hohlprofil und Strukturelemente
- 2015Tape braiding
- 2014Faser-Thermoplast-Verbund: Neue Möglichkeiten zur Entwicklung von Leichtbauprodukten
Places of action
Organizations | Location | People |
---|
document
Inside hybridization of CF/PAEK hollow profiles by means of injection molding
Abstract
<br/>Hollow profiles made of braided thermoplastic tape material are able to meet the demands of future aviation applications in terms of cost, cycle time and mechanical properties of structural components. By using the overmolding technology additional elements, i.e. load introductions, can be formed onto the hollow profile, increasing its functionality. This work presents a novel processing route for a driveshaft load introduction design of hollow profiles, whereby the load introduction element is injection molded onto the inside of a thermoplastic hollow profile. To form the contour of a splined shaft of the injection molding part inside the hollow profile, a collapsible core is used in conjunction with a ring gate. In order to ensure a proper bonding between the injection molding material and the composite, the hollow profile is heated externally in an infrared oven and then transferred into an injection molding tool for the functionalization step. This process set up requires a precise adjustment of the wall thickness of the hollow profile, the contour of the collapsible core and the process temperature. Extensive processing trials are performed on different temperatures and laminate configurations. Photomicrographs, computer tomography scans and mechanical tests are used for evaluating the part quality.