Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Senghor, Fiacre Djonkone

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Modeling of electromagnetic phenomena within laminate composite materialscitations

Places of action

Chart of shared publication
Kane, Banda
1 / 5 shared
Bensaid, Samir
1 / 7 shared
Bui, Huu Kien
1 / 7 shared
Berthiau, Gerard
1 / 8 shared
Trichet, Didier
1 / 10 shared
Ramdane, Brahim
1 / 3 shared
Ba, Abdoulaye
1 / 2 shared
Pierquin, Antoine
1 / 2 shared
Wasselynck, Guillaume
1 / 9 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kane, Banda
  • Bensaid, Samir
  • Bui, Huu Kien
  • Berthiau, Gerard
  • Trichet, Didier
  • Ramdane, Brahim
  • Ba, Abdoulaye
  • Pierquin, Antoine
  • Wasselynck, Guillaume
OrganizationsLocationPeople

document

Modeling of electromagnetic phenomena within laminate composite materials

  • Kane, Banda
  • Bensaid, Samir
  • Bui, Huu Kien
  • Berthiau, Gerard
  • Senghor, Fiacre Djonkone
  • Trichet, Didier
  • Ramdane, Brahim
  • Ba, Abdoulaye
  • Pierquin, Antoine
  • Wasselynck, Guillaume
Abstract

Laminated composite materials with long conductive carbon fibers and thermoplastic matrix have become an essential part of modern industry. These materials require heat input during many stages in their life cycle. Today, this heat transfer is too slow and too energy-consuming limiting the large-scale development of these materials. Electromagnetic induction is a promising solution for achieving a faster non-contact energy transfer and with high energy efficiency. This paper discusses the different stages involved in developing a numerical modelling tool for integrating the microscopic behavior of these complex composite materials in order to develop new processes.

Topics
  • impedance spectroscopy
  • Carbon
  • composite
  • thermoplastic