People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Latko-Durałek, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024Electrically conductive and flexible filaments of hot melt adhesive for the fused filament fabrication process
- 2023Effect of carbon nanoparticles on selected properties of hot melt adhesives
- 2023Experimental analysis of the influence of thermoplastic veils doped with nanofillers on the thermal properties of fibre-reinforced composites
- 2023Selected properties of electrically conductive hot melt ethylene-vinyl acetate adhesives
- 2022Electrically Conductive Adhesive Based on Thermoplastic Hot Melt Copolyamide and Multi-Walled Carbon Nanotubescitations
- 2021Fibers of Thermoplastic Copolyamides with Carbon Nanotubes for Electromagnetic Shielding Applicationscitations
- 2020Characterization of thermoplastic nonwovens of copolyamide hot melt adhesives filled with carbon nanotubes produced by melt-blowing methodcitations
- 2020Effect of the areal weight of CNT-doped veils on CFRP electrical propertiescitations
- 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubescitations
- 2019Thermal, Rheological and Mechanical Properties of PETG/rPETG Blendscitations
- 2018Nonwovens fabrics with carbon nanotubes used as a interleaves in CFRP
- 2018Improvement of CFRP electrical conductivity by applying nano enabled products containing carbon nanotubes
- 2018Comparison of properties of CFRPs containing nonwoven fabrics with carbon nanotubes, fabricated by prepreg and liquid technology
- 2018Mechanical Properties of PETG Fibres and Their Usage in Carbon Fibres/Epoxy Composite Laminatescitations
- 2018Nonwoven fabrics with carbon nanotubes used as interleaves in CFRPcitations
- 2018Processing and characterization of thermoplastic nanocomposite fibers of hot melt copolyamide and carbon nanotubescitations
- 2018Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubescitations
- 2014Thermoplastic nanocomposites with enhanced electrical conductivity
Places of action
Organizations | Location | People |
---|
document
Effect of carbon nanoparticles on selected properties of hot melt adhesives
Abstract
Electrically conductive adhesives are a group of materials developed to be used as adhesives in electronics or the aviation and automotive industry as a bonding medium of thermoplastic or thermosetting matrix composites. They consist of an adhesive, which lately the thermoplastic ones become more popular than the epoxy-based, and conductive fillers such as carbon nanotubes, carbon black, graphene, or metal powders.In this research,the electrically conductive adhesives were fabricated from the low-temperature copolyamide hot melt, multi-walled carbon nanotubes, and graphene flakes. The dispersion and distribution of the carbon fillers in the polymer matrix were observed using a high-resolution scanning electron microscope. Thermal properties were determined by thermogravimetric analysis and differential scanning calorimetry. The effect of the carbon fillers on the tack and rheological properties such as viscosity, storage and loss modulus were identified by an oscillatory rheometer. The electrical conductivity of these new conductive adhesives was measured using a nano voltmeter, and the results were correlated with the fillers' state of dispersion. To analyze the bonding strength of the electrically conductive adhesives, the lap shear test was performed.