People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Misiak, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024PBT-based polymer composites modified with carbon fillers with potential use of strain gauges
- 2024Mechanical recycling of CFRPs based on thermoplastic acrylic resin with the addition of carbon nanotubescitations
- 2024Electrically conductive and flexible filaments of hot melt adhesive for the fused filament fabrication process
- 2023Effect of carbon nanoparticles on selected properties of hot melt adhesives
- 2023Selected properties of electrically conductive hot melt ethylene-vinyl acetate adhesives
- 2022Electrically Conductive Adhesive Based on Thermoplastic Hot Melt Copolyamide and Multi-Walled Carbon Nanotubescitations
Places of action
Organizations | Location | People |
---|
document
Selected properties of electrically conductive hot melt ethylene-vinyl acetate adhesives
Abstract
Electrically conductive adhesives are a group of materials developed to be used as adhesives in electronics or the aviation and automotive industry as a bonding medium of thermoplastic or thermosetting matrix composites. They consist of an adhesive, which lately the thermoplastic ones become more popular than the epoxy-based, and conductive fillers such as carbon nanotubes, carbon black, graphene, or metal powders.This work fabricated new material from a type of thermoplastic polymer- hot melt ethylene-vinyl acetate and multi-walled carbon nanotubes using a twin-screw extruder. The composites were produced in 2 ways, directly blended with carbon nanotubes and diluted from masterbatch with higher MWCNT content. Thermal, mechanical, electrical, and rheological properties were characterized and correlated with the dispersion of the carbon nanotubes investigated by tomography technique and high-resolution microscope. It allowed optimizing conductive materials' manufacturing process and comparing which method results in better material properties.Such conductive materials can be successfully used in 3D printing and as sensors in many industries.