People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marguerès, Philippe
Institut Clément Ader
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024An innovative and low-cost system for in situ and real-time cure monitoring using electrical impedancemetry for thermoset and CFRP laminatecitations
- 2020Carbon fibres reinforced composites. Electrical impedance analysis: a gateway to smartnesscitations
- 2019Pixel Coloring modelling of PEKK crystallization
- 2019Nanocomposites, nanofilled matrices composites: manufacturing conditions and properties
- 2018Modelling the electrical behaviour of carbon/epoxy composites and monitoring changes in their microstructure during oven and autoclave curing using electrical impedancemetrycitations
- 2017Damage of woven composite under translaminar cracking tests using infrared thermographycitations
- 2016Détermination des paramètres géométriques pour la caractérisation électrique d’un composite T700/M21 en cours de cuissoncitations
- 2016Determination of anisotropic geometrical parameters for the electrical characterization of carbon/epoxy composite during oven curing
- 2016Determination of anisotropic geometrical parameters for the electrical characterization of carbon/epoxy composite during oven curing
- 2015Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermographycitations
- 2015CURE MONITORING AND SHM OF CARBON FIBER REINFORCED POLYMER PART II : MULTI-PHYSICAL CORRELATIONS
- 2015Cure Monitoring and SHM of Carbon Fiber Reinforced Polymer Part I : Impedance Analysis and Multiphysic Sensitivity
- 2015Damage of woven composite under tensile and shear stress using infrared thermography and micrographic cutscitations
- 2014An experimental study of damage evolution in 2D thin woven composite under quasi-static loading using infrared thermography
- 2014Measuring volumetric micro-scale displacements of a composite using a PGD-Based DVC
- 2014Measuring volumetric micro-scale displacements of a composite using a PGD-Based DVC
- 2014Cure Monitoring and SHM of Carbon Fiber Reinforced Polymer Part II : Multi-Physical Correlations
- 2014Cure Monitoring and SHM of Carbon Fiber Reinforced Polymer Part I : Impedance Analysis and Multiphysic Sensitivity
- 2013Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermographycitations
- 2013Damage analysis and fracture toughness evaluation in a thin woven composite laminate under static tension using infrared thermographycitations
- 2013Damage induced anisotropy and stiffness reduction evaluation in composite materials using ultrasonic wave transmissioncitations
- 2013Étude expérimentale de l’endommagement d’un composite tissé mince sous traction quasi-statique via thermographie infrarouge
- 2013Étude expérimentale de l’endommagement d’un composite tissé mince sous traction quasi-statique via thermographie infrarouge
- 2012Damage assessment of thin woven composite subjected to quasi-static tensile loading using infrared thermography
- 2012Damage assessment of thin woven composite subjected to quasi-static tensile loading using infrared thermography
- 2006STUDY FOR MANUFACTURNG A CORNER FITTING OBTAINED BY RESIN FILM INFUSION PROCESS
- 2005CHARACTERISATION OF A COMPOSITE STRUCTURE OBTAINED BY RFI USING HEXFIT ® SEMI PRODUCT
Places of action
Organizations | Location | People |
---|
document
Measuring volumetric micro-scale displacements of a composite using a PGD-Based DVC
Abstract
Volumetric information of the microstructure of materials can be obtained by X-ray microtomography (micro-CT). In this technique, the X-ray attenuation of each material is related to their density, which determines the contrast of the resulting images. Then, materials having two or more components with closely related density may generate low contrast images. In [1], contrast enhancement techniques are used to circumvent this problem, improving the visualisation of woven composite tow architecture. Today, advances in computer chips and image processing makes the micro-CT an interesting technique to be used in experimental mechanics. For instance, determining the mechanical behavior of composite materials is a 3D problem, which calls for 3D information. When dealing with full-field measurements, the Digital Volume Correlation technique [2] allows for volumetric displacement measurements in the bulk of the material being tested. In this work, we aim at measuring the 3D displacement field at the micro scale of a composite material by using DVC. The lack of contrast in the matrix leads to poor textures at the component scale. Then, it is proposed to include a contrast agent in the matrix. At the micro scale, determining the displacement field is a problem composed of a high number of degrees of freedom. A recent DVC algorithm, based on the proper generalized decomposition (PGD), is consequently introduced.