People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mosleh, Yasmine
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Time to failure analysis of wood adhesives
- 2024Interlaminar fracture behaviour of emerging laminated-pultruded CFRP plates for wind turbine bladescitations
- 2024Effect Of Moisture Cycling Duration And Temperature On The Strengthening And Stiffening Of Cycled Flax Fibres
- 2024Time to failure analysis of wood adhesives: a non-linear approach based on chemical reaction kinetics
- 2024Designing Stiff And Tough Biocomposites By Hybridization Of Flax And Silk Fibres
- 2024FLAx-REinforced Aluminum (FLARE)citations
- 2024Pre-straining as an effective strategy to mitigate ratcheting during fatigue in flax FRP composites for structural applications
- 2024Enhancing Fatigue Performance Of Structural Biocomposites By Pre-Straining And Pre-Creeping Methods
- 2024Interlaminar Fracture Behaviour Of Emerging Laminated-Pultruded Cfrp Plates For Wind Turbine Blades Under Different Loading Modes
- 2023Ductile woven silk fibre thermoplastic composites with quasi-isotropic strengthcitations
- 2023Damage tolerance in ductile woven silk fibre thermoplastic composites
- 2023Damage tolerance in ductile woven silk fibre thermoplastic composites
- 2023Flax fibre metal laminates (FLARE): A bio-based FML alternative combining impact resistance and vibration damping?
- 2023Effects of different joint wall lengths on in-plane compression properties of 3D braided jute/epoxy composite honeycombscitations
- 2023Highly Impact-Resistant Silk Fiber Thermoplastic Compositescitations
- 2022Smart material and design solutions for protective headgears in linear and oblique impacts: Column/matrix composite liner to mitigate rotational accelerationscitations
- 2022Smart material and design solutions for protective headgears in linear and oblique impactscitations
- 2022Prediction of the equilibrium moisture content based on the chemical composition and crystallinity of natural fibrescitations
- 2021Ductile woven silk fibre thermoplastic composites with quasi-isotropic strengthcitations
- 2021The photostability and peel strength of ethylene butyl acrylate copolymer blends for use in conservation of cultural heritagecitations
- 2020The Influence of Loading, Temperature and Relative Humidity on Adhesives for Canvas Liningcitations
- 2020The Influence of Loading, Temperature and Relative Humidity on Adhesives for Canvas Liningcitations
- 2018Effect of polymer foam anisotropy on energy absorption during combined shear-compression load
- 2018Anisotropic composite structure, liner and helmet comprising such a structure and use of and method of producing such a structure
- 2018Decoupling shear and compression properties in composite polymer foams by introducing anisotropy at macro level
- 2015Penetration impact resistance of tough novel steel fibre-reinforced polymer composites
- 2015Penetration impact resistance of novel tough steel fibre-reinforced polymer compositescitations
- 2014TPU/PCL/nanomagnetite ternary shape memory composites: Studies on their Thermal, Dynamic-Mechanical, Rheological, and Electrical Properties
- 2014Combined Shear-Compression Test to Characterize Foams under Oblique Loading for Bicycle Helmets
- 2014Characterisation of EPS Foams under Combined Shear-Compression Loading
- 2014Combined shear-compression test to characerize foams under oblique loading for bicycle helmets
- 2010Efficient Dispersion of Magnetite Nanoparticles in the Polyurethane Matrix Through Solution Mixing and Investigation of the Nanocomposite Properties
- 2010Efficient dispersion of magnetite nanoparticles in polyurethane matrix through solution mixing and investigation of the nanocomposite properties
Places of action
Organizations | Location | People |
---|
article
TPU/PCL/nanomagnetite ternary shape memory composites: Studies on their Thermal, Dynamic-Mechanical, Rheological, and Electrical Properties
Abstract
Shape memory polymer composites based on a blend of thermoplastic polyurethane (TPU) segmented block copolymer and poly(ε-caprolactone) (PCL) with weight ratio of 70/30 and various nanomagnetite contents (0–5 wt%) were prepared by melt blending of TPU and PCL, together with a masterbatch of TPU/nanomagnetite. The samples were compounded for 10 min at 200 °C using an internal mixer. Synthesized nanomagnetite powder was introduced to the masterbatch via a solution mixing method using a high-intensity ultrasonic horn. Subsequently, thermal, mechanical, rheological and electrical properties of the TPU/PCL/nanomagnetite shape memory composites were investigated through various tests. The degree of crystallization of the PCL component in the composite structure was inspected by differential scanning calorimetry (DSC) and X-ray diffraction measurements. The results revealed that the percentage of crystallinity and the melting temperature of the PCL component changed in the presence of magnetite nanoparticles, which was related to the nanoparticles acting as nucleants. Observing a single glass transition temperature (T g) in DSC thermograms of the samples was indicative of good compatibility of the TPU and PCL components in the composite structure. This was also confirmed by dynamic-mechanical analysis in which the loss modulus curves showed a single glass transition temperature. Moreover, the loss modulus peak at glass transition was lowered and broadened by addition of nanomagnetite, by which it was assumed that introducing nanoparticles into the system changed the mechanism of glass transition due to particle–matrix interactions. The dynamic rheological and electrical resistivity experiments verified the existence of a low percolation threshold at about 2 wt% nanomagnetite. The state of nanomagnetite dispersion in the masterbatch and the microstructure of the ternary composites were characterized by scanning electron microscopy. Finally, adding nanomagnetite led to weakening of shape recovery of the polymer blend, with shape recovery dropping to 70 % at 5 % of nanomagnetite.