Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stoberska, K.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Detonation sprayed coatings Al 2O 3-TiO 2 and WC/Co on adi investment castingscitations

Places of action

Chart of shared publication
Myszka, Dawid
1 / 23 shared
Babul, T.
1 / 5 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Myszka, Dawid
  • Babul, T.
OrganizationsLocationPeople

article

Detonation sprayed coatings Al 2O 3-TiO 2 and WC/Co on adi investment castings

  • Myszka, Dawid
  • Babul, T.
  • Stoberska, K.
Abstract

<p>Austempered Ductile Iron ADI posses many mechanical properties thanks them became competitive for many ferrous and nonferrous materials, for example for steels and aluminium alloys. These properties are somewhat limited in a couple of areas. One of them is instability of mechanical properties of ADI in high temperature caused by the separating processes over 400°C in this material. The research shown in this article proposes the detonation gun spraying method which could solve this problem. This article shows the technology of acquiring coatings Al <sub>2</sub>O <sub>3</sub>-TiO <sub>2</sub> and WC/Co detonation sprayed on the base made of austempered ductile iron EN-GJS-800-8 grade. Produced material was the subject of measuring light and electron microscopy. Research results show that sprayed coatings may have thickness form few to several hundreds of micrometers, micro hardness of Al <sub>2</sub>O <sub>3</sub>-TiO <sub>2</sub> coating can have values up to 900HV0.1 and for coatings WC/Co up to 1400HV0,1. This article shows also results of the abrasive wear tests. It was found that surface layer of the austempered ductile iron was hardened as a result of spraying process. This article also presents the results of the coating morphology tests, performed in the zone of connection between coating and base.</p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • aluminium
  • wear test
  • steel
  • aluminium alloy
  • hardness
  • electron microscopy
  • iron
  • investment casting