Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Philip, G. Whitten

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Nanocomposite Hydrogels - Fracture Toughness and Energy Dissipation Mechanismscitations

Places of action

Chart of shared publication
Pinter, Gerald
1 / 67 shared
Klein, Andrea
1 / 1 shared
Resch, Katharina
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Pinter, Gerald
  • Klein, Andrea
  • Resch, Katharina
OrganizationsLocationPeople

article

Nanocomposite Hydrogels - Fracture Toughness and Energy Dissipation Mechanisms

  • Pinter, Gerald
  • Klein, Andrea
  • Philip, G. Whitten
  • Resch, Katharina
Abstract

In this study, fracture toughness of nanocomposite<br/>hydrogels is quantified, and active mechanisms for dissipation<br/>of energy of nanocomposite hydrogels are ascertained.<br/>Poly(N,N-dimethylacrylamide) nanocomposite hydrogels are<br/>prepared by in situ free radical polymerization with the incorporation<br/>of Laponite, a hectorite synthetic clay. Transmission<br/>electron microscopy proves exfoliation of clay platelets that<br/>serve as multifunctional crosslinkers in the created physical<br/>network. Extraordinary high fracture energies of up to 6800<br/>J m22 are determined by the pure shear test approach, which<br/>shows that these soft and stretchable hydrogels are insensitive<br/>to notches. In contrast to single- and double-network hydrogels,<br/>dynamic mechanic analysis and stress relaxation experiments<br/>clarify that significant viscoelastic dissipation occurs<br/>during deformation of nanocomposite hydrogels. Similar to<br/>double-network hydrogels, crack tip blunting and plastic deformation<br/>also contribute to the observed massive fracture energies.

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • experiment
  • crack
  • shear test
  • electron microscopy
  • fracture toughness