People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alonso-Ramos, Carlos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Controlling the Modal Confinement in Silicon Nanophotonic Waveguides through Dual‐Metamaterial Engineeringcitations
- 2022Heterogeneous Integration of Doped Crystalline Zirconium Oxide for Photonic Applicationscitations
- 2020Erbium-doped oxide for optical gain on hybrid silicon photonics platforms (Student Paper)
- 202040 Gbps heterostructure germanium avalanche photo receiver on a silicon chipcitations
- 202040 Gbps heterostructure germanium avalanche photo receiver on a silicon chipcitations
- 2020Potential for sub-mm long erbium-doped composite silicon waveguide DFB laserscitations
- 2020Third Order Nonlinear Optical Susceptibility of Crystalline Oxide Yttria-Stabilized Zirconiacitations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers (invited review)citations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications High-speed silicon-germanium receivers (invited review)citations
- 2020Silicon-germanium receivers for short-waveinfrared optoelectronics and communications ; Silicon-germanium receivers for short-waveinfrared optoelectronics and communications: High-speed silicon-germanium receiverscitations
- 2019Towards optical amplification in complex functional oxides: exploring optical gain in erbium-doped yttria-stabilized zirconia waveguidescitations
- 2019Erbium-doped Yttria-stabilized Zirconia thin layers for photonic applications
- 2019Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineeringcitations
- 2019Nonlinear third order silicon photonics enabled by dispersion and subwavelength engineeringcitations
- 2018High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applicationscitations
- 2018High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applicationscitations
- 2018Nonlinear optical properties of integrated GeSbS chalcogenide waveguidescitations
- 2017Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2017Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2017Third Order Nonlinear Properties of GeSbS Chalcogenide Waveguides (poster)
- 2017Linear and Third Order Nonlinear Optical Properties of GeSbS Chalcogenide Integrated Waveguides (Orale)citations
- 2016Integration of Carbon Nanotubes in Silicon Strip and Slot Waveguide Micro-Ring Resonatorscitations
- 2016Functional oxides on Silicon and Sapphire substrates for photonic applications
- 2016Coupling of semiconductor carbon nanotubes emission with silicon photonic microring resonators
- 2016Data for Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding
- 2016Oxides on Silicon and Sapphire substrates for photonic applications
- 2016Oxides on Silicon and Sapphire substrates for photonic applications
- 2016Integration of carbon nanotubes in slot waveguides (Conference Presentation)
Places of action
Organizations | Location | People |
---|
document
Erbium-doped Yttria-stabilized Zirconia thin layers for photonic applications
Abstract
Near-infrared (near-IR) integrated photonic devices in silicon based platforms have been studied over the last decades for applications such as on-chip optical communications and sensing. Hybrid integration of functional oxides to search the limits of low power consumption has been a challenge overcome by material engenieering. In this regard, Yttria-Stabilized Zirconia (YSZ) stands as an interesting material for its structural, chemical and optical properties which includes transparency range from the visible to the mid-IR wavelength range. In this regard, we recently demonstrated YSZ waveguides with propagation losses as low as 2 dB/cm at a wavelength of 1380 nm [2]. Based on the encouraging preliminary results, we have recently explored the possibility to introduce active rare-earth dopants into YSZ waveguides to demonstrate on-chip optical amplifiers based on YSZ. In this study, we introduced multilayer approach depositing by pulsed laser deposition (PLD) technique by Er 3+ ions, providing outstanding luminescence around λ = 1.54 µm, in correspondence with C-band of telecommunications. Such active layers have been grown onto different platforms, including SiN and sapphire. The optical properties of Er-doped YSZ thin films growth on waveguides under resonant pumping will be discussed in this paper. These results pave the way towards the implementation of new rare-earth-doped functional oxides into hybrid photonic platforms in a customized and versatile manner, adding light amplification functionalities.