People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mylonakis, George
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Similarity based nonlinear settlement predictions of circular surface footings on clay
- 2023"p-y" curves for piles in radially inhomogeneous soil
- 2022A simplified analytical model for developing “t-z” curves for axially loaded piles
- 2022Axial shear friction of polypropylene pipes against granular beds
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Effects of Soil-Wall Separation on Static Earth Pressures
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019An analytical continuum model for axially loaded end-bearing piles in inhomogeneous soilcitations
- 2018Strain and strain rate effects on the rocking response of footing subjected to machine vibrations
- 2017Approximate solution for seismic earth pressures on rigid walls retaining inhomogeneous elastic soilcitations
- 2016Soil reaction to lateral harmonic pile motioncitations
- 2015Characterisation of shear wave velocity profiles of non-uniform bi-layer soil deposits:Analytical evaluation and experimental validationcitations
- 2015Characterisation of shear wave velocity profiles of non-uniform bi-layer soil depositscitations
- 2015Torsional vibrations of a column of fine-grained materialcitations
- 20131D harmonic response of layered inhomogeneous soilcitations
- 2011Wave dispersion studies in dry granular materials by the distinct element method
Places of action
Organizations | Location | People |
---|
document
Axial shear friction of polypropylene pipes against granular beds
Abstract
The axial pipe-soil shear resistance is an important feature in various subsea pipeline designs such as axial walking, buckling and end expansions. In deeper water, subsea pipelines are generally laid simply on the seabed and polymer coatings are widely used to protect pipelines from abrasion and erosion. There exists little guidance on the mobilised frictional forces between pipeline coatings and the seabed. A new device has been developed at the University of Bristol for the purpose of evaluating pipeline interface friction, and it enables the testing of large pipe sections (outer diameter up to about 0.4m) and up to cobble sized granular beds. A series of axial pipe-soil shear tests have been conducted between a segment of polypropylene pipe and a variety of underlying granular beds of different characteristics under normal stresses levels lower than 20kPa, typical of as-laid subsea pipelines. Results from the experiments have been used to determine a relationship between axial interface friction and granular soil properties, considerably expanding information available in the literature and reducing uncertainties in subsea pipeline design.