People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saux, Matthieu Le
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2021DLI-MOCVD Crx Cy coating to prevent Zr-based cladding from inner oxidation and secondary hydriding upon LOCA conditionscitations
- 2021Combined effects of temperature and of high hydrogen and oxygen contents on the mechanical behavior of a zirconium alloy upon cooling from the βZr phase temperature rangecitations
- 2020High temperature steam oxidation of chromium-coated zirconium-based alloys: Kinetics and processcitations
- 2020Phase transformations during cooling from the βZr phase temperature domain in several hydrogen-enriched zirconium alloys studied by in situ and ex situ neutron diffractioncitations
- 2020Breakaway oxidation of zirconium alloys exposed to steam around 1000 °Ccitations
- 2020A model to describe the cyclic anisotropic mechanical behavior of short fiber-reinforced thermoplasticscitations
- 2020Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations, load ratios and environmental conditionscitations
- 2019Comportement mécanique d'un revêtement de chrome déposé sur un substrat en alliage de zirconium
- 2019In-situ time-resolved study of structural evolutions in a zirconium alloy during high temperature oxidation and coolingcitations
- 2019Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactorscitations
- 2019A model to describe the cyclic anisotropic mechanical behavior of short fiber-reinforced thermoplastics
- 2018High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubescitations
- 2017Secondary hydriding of zirconium-based fuel claddings at high temperature (LOCA conditions). Part 2: Effect of high hydrogen contents on metallurgical and mechanical properties. Part 1: Multi-scale study of hydrogen distribution
- 2017Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobecitations
- 2016Out-of-pile RandD on chromium coated nuclear fuel zirconium based claddings for enhanced accident tolerance in LWRs
- 2016CEA studies on High temperature oxidation and hydriding of Zr based nuclear fuel claddings upon LOCA transients phenomenology, mechanisms and modelling => consequences on mechanical properties
- 2016Mechanical behavior at high temperature of highly oxygen- or hydrogen-enriched α and (prior-) $beta$ phases of zirconium alloys
- 2016Mechanical behavior at high temperatures of highly oxygen- or hydrogen-enriched α and (Prior-) β phases of zirconium alloyscitations
- 2015In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperaturecitations
- 2010Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25 °C and 480 °C under various stress states, including RIA loading conditionscitations
- 2008A model to describe the anisotropic viscoplastic mechanical behavior of fresh and irradiated Zircaloy-4 fuel claddings under RIA loading conditionscitations
Places of action
Organizations | Location | People |
---|
document
Mechanical behavior at high temperature of highly oxygen- or hydrogen-enriched α and (prior-) $beta$ phases of zirconium alloys
Abstract
During a hypothetical loss-of-coolant accident (LOCA), zirconium alloy fuel claddings can be loaded by internal pressure and exposed to steam at high temperature (HT, potentially up to 1200°C) until they are cooled and water quenched. A significant fraction of the oxygen reacting with the cladding during oxidation at HT diffuses beneath the oxide through the metallic substrate. This diffusion of oxygen induces a progressive transformation of the metallic $ _{Zr}$ phase layer into an intermediate layer of $ _{Zr}$(O) phase containing up to 7 wt.% of oxygen. Furthermore, in some specific conditions, the cladding may rapidly absorb a significant amount of hydrogen during steam exposition at high temperature. Then, hydrogen, as a $ _{Zr}$-stabilizer, would mainly diffuse and concentrate up to several thousands of wt.ppm into the inner$ _{Zr}$ phase layer