People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ghouri, Zafar Khan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Cooperative electrocatalytic effect of Pd and Ce alloys nanoparticles in PdCe@CNWs electrode for oxygen evolution reaction (OER)citations
- 2022Incorporation of manganese carbonyl sulfide ((Mn2S2 (CO)7) and mixed metal oxides-decorated reduced graphene oxide (MnFeCoO4/rGO) as a selective anode toward efficient OER from seawater splitting under neutral pH conditionscitations
- 2021Early transition-metal-based binary oxide/nitride for efficient electrocatalytic hydrogen evolution from saline water in different pH environmentscitations
- 2021Incorporation of Manganese Carbonyl Sulfide ((Mn2S2 (CO)7) and Mixed Metal Oxides-Decorated Reduced Graphene Oxide (MnFeCoO4/rGO) as a Selective Anode Toward Efficient OER from Seawater Splitting Under Neutral PH Conditions
- 2021Synthesis and experimental investigation of δ-MnO2/N-rGO nanocomposite for Li-O2 batteries applicationscitations
- 2021Theoretical and experimental investigations of Co-Cu bimetallic alloys-incorporated carbon nanowires as an efficient bi-functional electrocatalyst for water splittingcitations
- 2019Engineering of nickel based catalyst for direct urea fuel cell-energy from municipal liquid waste (Mlw)
- 2018Application of FTIR and LA-ICPMS spectroscopies as a possible approach for biochemical analyses of different rat brain regionscitations
- 2018Stable N-doped & FeNi-decorated graphene non-precious electrocatalyst for Oxygen Reduction Reaction in Acid Mediumcitations
- 2018Surfactant/organic solvent free single-step engineering of hybrid graphene-Pt/TiO2 nanostructure: Efficient photocatalytic system for the treatment of wastewater coming from textile industriescitations
- 2017Engineering of magnetically separable ZnFe2O4@ TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from watercitations
- 2016Photoluminescent and transparent Nylon-6 nanofiber mat composited by CdSe@ZnS quantum dots and poly (methyl methacrylate)citations
- 2016Nano-designed λ-CaCO3@rGO photo-catalyst for effective adsorption and simultaneous removal of organic pollutantcitations
- 2016Nickel nanoparticles-decorated graphene as highly effective and stable electrocatalyst for urea electrooxidationcitations
- 2016Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenescitations
- 2016Nano-engineered ZnO/CeO2 dots@CNFs for fuel cell applicationcitations
- 2015Synthesis and Electrochemical Properties of MnO 2 and Co-Decorated Graphene as Novel Nanocomposite for Electrochemical Super Capacitors Applicationcitations
- 2015Synthesis and characterization of Nitrogen-doped &CaCO3-decorated reduced graphene oxide nanocomposite for electrochemical supercapacitorscitations
- 2015Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fiberscitations
- 2014Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline mediumcitations
Places of action
Organizations | Location | People |
---|
booksection
Engineering of nickel based catalyst for direct urea fuel cell-energy from municipal liquid waste (Mlw)
Abstract
<p>Alternatives to conventional fuels are required to meet the global energy demand, urea is a relatively non-toxic crystalline substance that is perhaps best known for its presence in municipal liquid waste (MLW) and human/animal urine. Urea has a high energy density compare to compressed/liquid hydrogen, hence is useful as an alternative energy vector for direct urea fuel cell. Luckily, urea-based fuel cells are operated in alkaline medium which offers good chance for the non-precious transition metals to be invoked as anode material due to the good chemical stability. Moreover, compared to noble metals, nickel catalysts showed higher current densities and lower oxidation potentials for the electrooxidation of urea. Consequently, this chapter details the study of physicochemical and electrochemical properties of two novel nickel based nanomaterials for direct urea fuel cells, together with their brief synthesis procedures.</p>